Publications by authors named "Enqin Li"

It has been reported that human embryonic stem cells (hESCs) treated with BMP4 and inhibitors of TGFβ signaling (A83-01) and FGF signaling (PD173074), called BAP, can efficiently differentiate to extraembryonic (ExE) cells . Due to restricted access to human embryos, it is ethically impossible to test the developmental potential of ExE cells . Here, we demonstrate that most ExE cells expressed molecular markers for both trophoblasts (TBs) and amniotic cells (ACs).

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) are present in almost all the tissues in the body, critical for their homeostasis and regeneration. However, the stemness of MSCs is mainly an in vitro observation, and lacking exclusive markers for endogenous MSCs makes it difficult to study the multipotency of MSCs in vivo, especially for human MSCs. To address this hurdle, we injected GFP-tagged human embryonic stem cell (hESC)-derived MSCs (EMSCs) into mouse blastocysts.

View Article and Find Full Text PDF

The mRNA vaccines (RVs) can reduce the severity and mortality of severe acute respiratory syndrome coronavirus (SARS-CoV-2). However, almost only the inactivated vaccines (IVs) but no RVs had been used in mainland China until most recently, and the relaxing of its anti-pandemic strategies in December 2022 increased concerns about new outbreaks. In comparison, many of the citizens in Macao Special Administrative Region of China received three doses of IV (3IV) or RV (3RV), or 2 doses of IV plus one booster of RV (2IV+1RV).

View Article and Find Full Text PDF

We have previously demonstrated that mesenchymal stromal/stem cells (MSCs) in spheroids (MSC) tolerate ambient and hypoxic conditions for a prolonged time. Local administration of MSC, but not dissociated MSCs (MSC), promotes wound healing and relieves multiple sclerosis and osteoarthritis in mice and monkeys. These findings indicate an advantage of MSC over MSC in sustaining cell viability and efficacy following transplantation, which, however, does not appear to apply to intravenous (i.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) as a therapeutic promise are often quickly cleared by innate immune cells of the host including natural killer (NK) cells. Efforts have been made to generate immune-escaping human embryonic stem cells (hESCs) where T cell immunity is evaded by defecting β-2-microglobulin (B2M), a common unit for human leukocyte antigen (HLA) class I, and NK cells are inhibited via ectopic expression of or . However, NK subtypes vary among recipients and even at different pathologic statuses.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSCs) derived from somatic tissues have been used to promote lipotransfer, a common practice in cosmetic surgery. However, the effect of lipotransfer varies, and the mechanism of action remains vague. To address these questions, we differentiated human embryonic stem cells, a stable and unlimited source, into MSCs (EMSCs).

View Article and Find Full Text PDF

The outbreak of Coronavirus disease 2019 (COVID-19), caused by severe acute respiratory syndrome (SARS) coronavirus 2 (SARS-CoV-2), has thus far killed over 3,000 people and infected over 80,000 in China and elsewhere in the world, resulting in catastrophe for humans. Similar to its homologous virus, SARS-CoV, which caused SARS in thousands of people in 2003, SARS-CoV-2 might also be transmitted from the bats and causes similar symptoms through a similar mechanism. However, COVID-19 has lower severity and mortality than SARS but is much more transmissive and affects more elderly individuals than youth and more men than women.

View Article and Find Full Text PDF

It has been demonstrated that mesenchymal stem cells (MSCs) differentiated from human embryonic stem cells (hESCs), name EMSCs, can treat a variety of autoimmune and inflammatory diseases, with similar efficacies to those achieved with MSCs derived from somatic tissues such as bone marrow (BMSCs). The chance increases even higher for EMSCs, than somatic tissue derived MSCs​, to become a cell drug as the former can be produced in large scale from an unlimited hESC line with easier quality control and less biosafety concern. We have further demonstrated that both human ESCs and EMSCs, after aggregation to form spheroids, can tolerate hypoxic and ambient conditions (AC) for over 4 and 10 days, respectively, without loss of their viability and alteration of their functions.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSC) derived from adult tissues effectively promote wound healing. However, MSC quality varies, and the quantity of MSC is limited, as MSC are acquired through donations. Moreover, the survival and functioning of dissociated MSC delivered to an inflammatory lesion are subject to challenges.

View Article and Find Full Text PDF

Acetyl-coA carboxylase 1 (ACC1) is the first and rate-limiting enzyme in the de novo fatty acid synthesis (FASyn) pathway. In this study, through public database analysis and clinic sample test, we for the first time verified that ACC1 mRNA is overexpressed in non-small-cell lung cancer (NSCLC), which is accompanied by reduced DNA methylation at CpG island S shore of ACC1. Our study further demonstrated that higher ACC1 levels are associated with poor prognosis in NSCLC patients.

View Article and Find Full Text PDF

Despite the long discrepancy over their definition, heterogeneity, and functions, mesenchymal stem cells (MSCs) have proved to be a key player in tissue repair and homeostasis. Generally, somatic tissue-derived MSCs (st-MSCs) are subject to quality variations related to donated samples and biosafety concern for transmission of potential pathogens from the donors. In contrast, human pluripotent stem cells (hPSCs) are unlimited in supply, clear in the biological background, and convenient for quality control, genetic modification, and scale-up production.

View Article and Find Full Text PDF

Mesenchymal stem cells (MSC) have been derived from a variety of tissues, and cultured either in animal serum-containing (SC) or serum-free (SF) media. We have previously derived MSC from human embryonic stem cells via an intermediate trophoblast step (named EMSC), which also have immunosuppressive and therapeutic effects on animal models of autoimmune disease. To promote the clinical application of this new source of MSC, we report here EMSC derived and cultured in a SF medium MesenCult (SF-EMSC) in comparison with a SC medium (SC-EMSC).

View Article and Find Full Text PDF

Multiple sclerosis (MS) is an autoimmune and demyelinating disease. Genome-wide association studies have shown that MS is associated with many genetic variants in some human leucocyte antigen genes and other immune-related genes, however, those studies were mostly specific to Caucasian populations. We attempt to address whether the same associations are also true for Asian populations by conducting whole-exome sequencing on MS patients from southern China.

View Article and Find Full Text PDF

Nonhuman primate experimental autoimmune encephalomyelitis (EAE) is a valuable model for multiple sclerosis, an inflammatory demyelinating disease in the central nervous system (CNS). Human embryonic stem cell-derived mesenchymal stem cells (EMSC) are effective in treating murine EAE. Yet, it remains unknown whether the EMSC efficacy is translatable to humans.

View Article and Find Full Text PDF

Human embryonic stem cell (hESC) derived mesenchymal stem cells (EMSC) are efficacious in treating a series of autoimmune, inflammatory, and degenerative diseases in animal models. However, all the EMSC derivation methods reported so far rely on two-dimensional (2D) culture systems, which are inefficient, costive and difficult for large-scale production. HESC, as an unlimited source, can be successively propagated in spheroids.

View Article and Find Full Text PDF

Radiation-induced brain injury (RI) commonly occurs in patients who received head and neck radiotherapy. However, the mechanism of RI remains unclear. We aimed to evaluate whether pyroptosis was involved in RI and the impact of mesenchymal stem cells (MSCs) on it.

View Article and Find Full Text PDF

Marfan syndrome (MFS) is a connective tissue disorder caused by mutations in gene, which encodes a key extracellular matrix protein FIBRILLIN-1. The haplosufficiency of FBN1 has been implicated in pathogenesis of MFS with manifestations primarily in cardiovascular, muscular, and ocular tissues. Due to limitations in animal models to study the late-onset diseases, human pluripotent stem cells (PSCs) offer a homogeneic tool for dissection of cellular and molecular pathogenic mechanism for MFS .

View Article and Find Full Text PDF

Human stem cells are vulnerable to unfavorable conditions, and their transportation relies on costly and inconvenient cryopreservation. We report here that human mesenchymal stem cells (MSC) in spheroids survived ambient conditions (AC) many days longer than in monolayer. Under AC, the viability of MSC in spheroids remained >90% even after seven days, whereas MSC in monolayer mostly died fast.

View Article and Find Full Text PDF

Cholesteryl Ester Transfer Protein (CETP) is an important therapeutic target for the treatment of atherosclerotic cardiovascular disease. Our molecular modeling study revealed that pentacyclic triterpenoid compounds could mimic the protein-ligand interactions of the endogenous ligand cholesteryl ester (CE) by occupying its binding site. Alignment of the docking conformations of oleanolic acid (OA), ursolic acid (UA) and the crystal conformations of known CETP inhibitor Torcetrapib in the active site proposed the applicability of fragment-based drug design (FBDD) approaches in this study.

View Article and Find Full Text PDF

Mesenchymal stem/stromal cells (MSCs) have great clinical potential in modulating inflammation and promoting tissue repair. Human embryonic stem cells (hESCs) have recently emerged as a potentially superior cell source for MSCs. However, the generation methods reported so far vary greatly in quality and efficiency.

View Article and Find Full Text PDF

The Smoothened (Smo) receptor is an important component of the hedgehog (Hh) signaling pathway, which plays a critical role during embryonic development. In adults, Hh signaling is curtailed and has limited functions such as stem cell maintenance and tissue repair. However, aberrant activity of the Hh signaling in adults has been linked to numerous human cancers.

View Article and Find Full Text PDF

Clinical trials have demonstrated that pediatric acute promyelocytic leukemia (APL) is highly curable. Small-scale studies have reported on the treatment of APL using one or two treatment regimes. Here, we report a multiple center-based study of 119 cases of pediatric APL treated with four regimes based on all-trans-retinoic acid (ATRA).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: