Background And Purpose: Voltage sensitivity is a common feature of many membrane proteins, including some G-protein coupled receptors (GPCRs). However, the functional consequences of voltage sensitivity in GPCRs are not well understood.
Experimental Approach: In this study, we investigated the voltage sensitivity of the post-synaptic metabotropic glutamate receptor mGlu and its impact on synaptic transmission.
Background: Shank3 is a scaffolding protein essential for the organization and function of the glutamatergic postsynapse. Monogenic mutations in gene are among the leading genetic causes of Autism Spectrum Disorders (ASD). The multiplicity of Shank3 isoforms seems to generate as much functional diversity and yet, there are no tools to study endogenous Shank3 proteins in an isoform-specific manner.
View Article and Find Full Text PDFMetabotropic glutamate receptor Type 3 (mGlu3) controls the sleep/wake architecture, which plays a role in the glutamatergic pathophysiology of schizophrenia. Interestingly, mGlu3 receptor expression is decreased in the brain of schizophrenic patients. However, little is known about the molecular mechanisms regulating mGlu3 receptors at the cell membrane.
View Article and Find Full Text PDFShank3 monogenic mutations lead to autism spectrum disorders (ASD). Shank3 is part of the glutamate receptosome that physically links ionotropic NMDA receptors to metabotropic mGlu5 receptors through interactions with scaffolding proteins PSD95-GKAP-Shank3-Homer. A main physiological function of the glutamate receptosome is to control NMDA synaptic function that is required for plasticity induction.
View Article and Find Full Text PDFMammalian target of rapamycin (mTOR) controls many crucial cellular functions, including protein synthesis, cell size, energy metabolism, lysosome and mitochondria biogenesis, and autophagy. Consequently, deregulation of mTOR signaling plays a role in numerous pathological conditions such as cancer, metabolic disorders and neurological diseases. Developing new tools to monitor mTOR spatiotemporal activation is crucial to better understand its roles in physiological and pathological conditions.
View Article and Find Full Text PDFThe atypical chemokine receptor 3 (ACKR3) plays a pivotal role in directing the migration of various cellular populations and its over-expression in tumors promotes cell proliferation and invasiveness. The intracellular signaling pathways transducing ACKR3-dependent effects remain poorly characterized, an issue we addressed by identifying the interactome of ACKR3. Here, we report that recombinant ACKR3 expressed in HEK293T cells recruits the gap junction protein Connexin 43 (Cx43).
View Article and Find Full Text PDFBackground: mTOR signaling is an essential nutrient and energetic sensing pathway. Here we describe AIMTOR, a sensitive genetically encoded BRET (Bioluminescent Resonance Energy Transfer) biosensor to study mTOR activity in living cells.
Results: As a proof of principle, we show in both cell lines and primary cell cultures that AIMTOR BRET intensities are modified by mTOR activity changes induced by specific inhibitors and activators of mTORC1 including amino acids and insulin.
Neuronal hippocampal cultures are simple and valuable models for studying neuronal function. While embryonic cultures are widely used for different applications, mouse postnatal cultures are still challenging, lack reproducibility and/or exhibit inappropriate neuronal activity. Yet, postnatal cultures have major advantages such as allowing genotyping of pups before culture and reducing the number of experimental animals.
View Article and Find Full Text PDFDopamine receptor D1 modulates glutamatergic transmission in cortico-basal ganglia circuits and represents a major target of L-DOPA therapy in Parkinson's disease. Here we show that D1 and metabotropic glutamate type 5 (mGlu5) receptors can form previously unknown heteromeric entities with distinctive functional properties. Interacting with Gq proteins, cell-surface D1-mGlu5 heteromers exacerbated PLC signaling and intracellular calcium release in response to either glutamate or dopamine.
View Article and Find Full Text PDFMetabotropic glutamate receptors are expressed at excitatory synapses and control synaptic transmission in mammalian brain. These receptors are involved in numerous patho-physiological functions. However, little is known about the molecular determinants responsible for their intracellular transport and membrane targeting.
View Article and Find Full Text PDFFront Comput Neurosci
January 2018
A growing number of tools now allow live recordings of various signaling pathways and protein-protein interaction dynamics in time and space by ratiometric measurements, such as Bioluminescence Resonance Energy Transfer (BRET) Imaging. Accurate and reproducible analysis of ratiometric measurements has thus become mandatory to interpret quantitative imaging. In order to fulfill this necessity, we have developed an open source toolset for Fiji--allowing a systematic analysis, from image processing to ratio quantification.
View Article and Find Full Text PDFFragile X syndrome (FXS) is caused by the absence of the Fragile X Mental Retardation Protein (FMRP) in neurons. In the mouse, the lack of FMRP is associated with an excessive translation of hundreds of neuronal proteins, notably including postsynaptic proteins. This local protein synthesis deregulation is proposed to underlie the observed defects of glutamatergic synapse maturation and function and to affect preferentially the hundreds of mRNA species that were reported to bind to FMRP.
View Article and Find Full Text PDFThe appropriate trafficking of glutamate receptors to synapses is crucial for basic synaptic function and synaptic plasticity. It is now accepted that NMDA receptors (NMDARs) internalize and are recycled at the plasma membrane but also exchange between synaptic and extrasynaptic pools; these NMDAR properties are also key to governing synaptic plasticity. Scribble1 is a large PDZ protein required for synaptogenesis and synaptic plasticity.
View Article and Find Full Text PDFQuantitative spatio-temporal characterization of protein interactions in living cells remains a major challenge facing modern biology. We have investigated in living neurons the spatial dependence of the stoichiometry of interactions between two core proteins of the N-methyl-D-aspartate (NMDA)-receptor-associated scaffolding complex, GKAP (also known as DLGAP1) and DLC2 (also known as DYNLL2), using a novel variation of fluorescence fluctuation microscopy called two-photon scanning number and brightness (sN&B). We found that dimerization of DLC2 was required for its interaction with GKAP, which, in turn, potentiated GKAP self-association.
View Article and Find Full Text PDFDevelopment of dendritic spines is important for synaptic function, and alteration in spine morphogenesis is often associated with mental disorders. Rich2 was an uncharacterized Rho-GAP protein. Here we searched for a role of this protein in spine morphogenesis.
View Article and Find Full Text PDFScaffolding proteins interact with membrane receptors to control signaling pathways and cellular functions. However, the dynamics and specific roles of interactions between different components of scaffold complexes are poorly understood because of the dearth of methods available to monitor binding interactions. Using a unique combination of single-cell bioluminescence resonance energy transfer imaging in living neurons and electrophysiological recordings, in this paper, we depict the role of glutamate receptor scaffold complex remodeling in space and time to control synaptic transmission.
View Article and Find Full Text PDFScaffolding proteins that are associated with glutamate receptors in dendritic spines govern the location and function of receptors to control synaptic transmission. Unraveling the spatio-temporal dynamics of protein-protein interactions within components of the scaffolding complex will bring to light the function of these interactions. Combining bioluminescence resonance energy transfer (BRET) imaging to electrophysiological recordings, we have recently shown that GKAP, a core protein of the scaffolding complex, interacts with DLC2, a protein associated with molecular motors.
View Article and Find Full Text PDFAt glutamatergic brain synapses, scaffolding proteins regulate receptor location and function. The targeting and organization of scaffolding proteins in the postsynaptic density (PSD) is poorly understood, but it is known that a core protein of the glutamatergic receptor postsynaptic scaffold complex, guanylate-kinase-associated protein (GKAP) interacts with dynein light chain 2 (DLC2, also known as DYNLL2), a protein associated with molecular motors. In the present study, we combined BRET imaging, immunostaining and electrophysiological recording to assess the role of the GKAP-DLC2 interaction in the functional organization of the glutamatergic synapse.
View Article and Find Full Text PDF