Metabolic changes involving the tricarboxylic acid (TCA) cycle have been linked to different non-metabolic cell processes. Among them, apart from cancer and immunity, emerges the DNA damage response (DDR) and specifically DNA damage repair. The oncometabolites succinate, fumarate and 2-hydroxyglutarate (2HG) increase reactive oxygen species levels and create pseudohypoxia conditions that induce DNA damage and/or inhibit DNA repair.
View Article and Find Full Text PDFHypoxia-inducible factors (HIF) 2α and 1α are the major oxygen-sensing molecules in eukaryotic cells. HIF2α has been pathogenically linked to paraganglioma and pheochromocytoma (PPGL) arising in sympathetic paraganglia or the adrenal medulla (AM), respectively. However, its involvement in the pathogenesis of paraganglioma arising in the carotid body (CB) or other parasympathetic ganglia in the head and neck (HNPGL) remains to be defined.
View Article and Find Full Text PDFBesides their crucial role in cell electrogenesis and maintenance of basal membrane potential, the voltage-dependent K channel Kv11.1/hERG1 shows an essential impact in cell proliferation and other processes linked to the maintenance of tumour phenotype. To check the possible influence of channel expression on DNA damage responses, HEK293 cells, treated with the genotoxic agent methyl methanesulfonate (MMS), were compared with those of a HEK-derived cell line (H36), permanently transfected with the Kv11.
View Article and Find Full Text PDF