Publications by authors named "Enoch A Nagelli"

Tunable porous composite materials to control metal and metal oxide functionalization, conductivity, pore structure, electrolyte mass transport, mechanical strength, specific surface area, and magneto-responsiveness are critical for a broad range of energy storage, catalysis, and sensing applications. Biotemplated transition metal composite aerogels present a materials approach to address this need. To demonstrate a solution-based synthesis method to develop cobalt and cobalt oxide aerogels for high surface area multifunctional energy storage electrodes, carboxymethyl cellulose nanofibers (CNF) and alginate biopolymers were mixed to form hydrogels to serve as biotemplates for cobalt nanoparticle formation via the chemical reduction of cobalt salt solutions.

View Article and Find Full Text PDF

The synthesis of high surface area porous noble metal nanomaterials generally relies on time consuming coalescence of pre-formed nanoparticles, followed by rinsing and supercritical drying steps, often resulting in mechanically fragile materials. Here, a method to synthesize nanostructured porous platinum-based macrotubes and macrobeams with a square cross section from insoluble salt needle templates is presented. The combination of oppositely charged platinum, palladium, and copper square planar ions results in the rapid formation of insoluble salt needles.

View Article and Find Full Text PDF

Here, a method to synthesize cellulose nanofiber biotemplated palladium composite aerogels is presented. Noble metal aerogel synthesis methods often result in fragile aerogels with poor shape control. The use of carboxymethylated cellulose nanofibers (CNFs) to form a covalently bonded hydrogel allows for the reduction of metal ions such as palladium on the CNFs with control over both nanostructure and macroscopic aerogel monolith shape after supercritical drying.

View Article and Find Full Text PDF

Nobel metal composite aerogel fibers made from flexible and porous biopolymers offer a wide range of applications, such as in catalysis and sensing, by functionalizing the nanostructure. However, producing these composite aerogels in a defined shape is challenging for many protein-based biopolymers, especially ones that are not fibrous proteins. Here, we present the synthesis of silk fibroin composite aerogel fibers up to 2 cm in length and a diameter of ~300 μm decorated with noble metal nanoparticles.

View Article and Find Full Text PDF

Multi-metallic and alloy nanomaterials enable a broad range of catalytic applications with high surface area and tuning reaction specificity through the variation of metal composition. The ability to synthesize these materials as three-dimensional nanostructures enables control of surface area, pore size and mass transfer properties, electronic conductivity, and ultimately device integration. Au-Cu nanomaterials offer tunable optical and catalytic properties at reduced material cost.

View Article and Find Full Text PDF

Here, a method to synthesize gold, palladium, and platinum aerogels via a rapid, direct solution-based reduction is presented. The combination of various precursor noble metal ions with reducing agents in a 1:1 (v/v) ratio results in the formation of metal gels within seconds to minutes compared to much longer synthesis times for other techniques such as sol-gel. Conducting the reduction step in a microcentrifuge tube or small volume conical tube facilitates a proposed nucleation, growth, densification, fusion, equilibration model for gel formation, with final gel geometry smaller than the initial reaction volume.

View Article and Find Full Text PDF

Noble metal aerogels offer a wide range of catalytic applications due to their high surface area and tunable porosity. Control over monolith shape, pore size, and nanofiber diameter is desired in order to optimize electronic conductivity and mechanical integrity for device applications. However, common aerogel synthesis techniques such as solvent mediated aggregation, linker molecules, sol⁻gel, hydrothermal, and carbothermal reduction are limited when using noble metal salts.

View Article and Find Full Text PDF