Prog Biophys Mol Biol
January 2016
Myokit is a new powerful and versatile software tool for modeling and simulation of cardiac cellular electrophysiology. Myokit consists of an easy-to-read modeling language, a graphical user interface, single and multi-cell simulation engines and a library of advanced analysis tools accessible through a Python interface. Models can be loaded from Myokit's native file format or imported from CellML.
View Article and Find Full Text PDFKey Points: Beat-to-beat alternation (alternans) of the cardiac action potential duration is known to precipitate life-threatening arrhythmias and can be driven by the kinetics of voltage-gated membrane currents or by instabilities in intracellular calcium fluxes. To prevent alternans and associated arrhythmias, suitable markers must be developed to quantify the susceptibility to alternans; previous theoretical studies showed that the eigenvalue of the alternating eigenmode represents an ideal marker of alternans. Using rabbit ventricular myocytes, we show that this eigenvalue can be estimated in practice by pacing these cells at intervals varying stochastically.
View Article and Find Full Text PDFBackground: Delayed afterdepolarizations (DADs) have been well characterized as arrhythmia triggers, but their role in generating a tissue substrate vulnerable to reentry is not well understood.
Objective: The purpose of this study was to test the hypothesis that random DADs can self-organize to generate both an arrhythmia trigger and a vulnerable substrate simultaneously in cardiac tissue as a result of gap junction coupling.
Methods: Computer simulations in 1-dimensional cable and 2-dimensional tissue models were performed.
The aim of this perspective article is to share with the community of ion channel scientists our thoughts and expectations regarding the increasing role that computational tools will play in the future of our field. The opinions and comments detailed here are the result of a 3-day long international exploratory workshop that took place in October 2013 and that was supported by the Swiss National Science Foundation.
View Article and Find Full Text PDFBackground: Under conditions promoting early afterdepolarizations (EADs), ventricular tissue can become bi-excitable, that is, capable of wave propagation mediated by either the Na current (INa) or the L-type calcium current (ICa,L), raising the possibility that ICa,L-mediated reentry may contribute to polymorphic ventricular tachycardia (PVT) and torsades de pointes. ATP-sensitive K current (IKATP) activation suppresses EADs, but the effects on ICa,L-mediated reentry are unknown.
Objective: To investigate the effects of IKATP activation on ICa,L-mediated reentry.
Background: Defects of cytoarchitectural proteins can cause left ventricular noncompaction, which is often associated with conduction system diseases. We have previously identified a p.D117N mutation in the LIM domain-binding protein 3-encoding Z-band alternatively spliced PDZ motif gene (ZASP) in a patient with left ventricular noncompaction and conduction disturbances.
View Article and Find Full Text PDFEarly afterdepolarizations (EADs) are linked to both triggered arrhythmias and reentrant arrhythmias by causing premature ventricular complexes (PVCs), focal excitations, or heterogeneous tissue substrates for reentry formation. However, a critical number of cells that synchronously exhibit EADs are needed to result in arrhythmia triggers and substrates in tissue. In this study, we use mathematical modeling and computer simulations to investigate EAD synchronization and arrhythmia induction in tissue models with random cell-to-cell variations.
View Article and Find Full Text PDFEarly afterdepolarizations (EADs) are voltage oscillations that occur during the repolarizing phase of the cardiac action potential and cause cardiac arrhythmias in a variety of clinical settings. EADs occur in the setting of reduced repolarization reserve and increased inward-over-outward currents, which intuitively explains the repolarization delay but does not mechanistically explain the time-dependent voltage oscillations that are characteristic of EADs. In a recent theoretical study, we identified a dual Hopf-homoclinic bifurcation as a dynamical mechanism that causes voltage oscillations during EADs, depending on the amplitude and kinetics of the L-type Ca(2+) channel (LTCC) current relative to the repolarizing K(+) currents.
View Article and Find Full Text PDFIntracellular calcium (Ca) cycling dynamics in cardiac myocytes is regulated by a complex network of spatially distributed organelles, such as sarcoplasmic reticulum (SR), mitochondria, and myofibrils. In this study, we present a mathematical model of intracellular Ca cycling and numerical and computational methods for computer simulations. The model consists of a coupled Ca release unit (CRU) network, which includes a SR domain and a myoplasm domain.
View Article and Find Full Text PDFAlternans of cardiac action potential duration (APD) is a well-known arrhythmogenic mechanism which results from dynamical instabilities. The propensity to alternans is classically investigated by examining APD restitution and by deriving APD restitution slopes as predictive markers. However, experiments have shown that such markers are not always accurate for the prediction of alternans.
View Article and Find Full Text PDFCirc Arrhythm Electrophysiol
February 2012
Background: Right ventricular failure (RVF) in pulmonary hypertension (PH) is associated with increased incidence of sudden death by a poorly explored mechanism. We test the hypothesis that PH promotes spontaneous ventricular fibrillation (VF) during a critical post-PH onset period characterized by a sudden increase in mortality.
Methods And Results: Rats received either a single subcutaneous dose of monocrotaline (MCT, 60 mg/kg) to induce PH-associated RVF (PH, n=24) or saline (control, n=17).
Early after-depolarization (EAD), or abnormal depolarization during the plateau phase of action potentials, is a hallmark of long-QT syndrome (LQTS). More than 13 genes have been identified as responsible for LQTS, and elevated risks for EADs may depend on genotypes, such as exercise in LQT1 vs. sudden arousal in LQT2 patients.
View Article and Find Full Text PDFBackground: In normal atrial and ventricular tissue, the electrical wavefronts are mediated by the fast sodium current (I(Na)), whereas in sinoatrial and atrioventricular nodal tissue, conduction is mediated by the slow L-type calcium current (I(Ca,L)). However, it has not been shown whether the same tissue can exhibit both the I(Na)-mediated and the I(Ca,L)-mediated conduction.
Objective: This study sought to test the hypothesis that bi-stable cardiac wave conduction, mediated by I(Na) and I(Ca,L), respectively, can occur in the same tissue under conditions promoting early afterdepolarizations (EADs), and to study how this novel wave dynamics is related to the mechanisms of EAD-mediated arrhythmias.
Ion channels exhibit stochastic conformational changes determining their gating behavior. In addition, the process of protein turnover leads to a natural variability of the number of membrane and gap junctional channels. Nevertheless, in computational models, these two aspects are scarcely considered and their impacts are largely unknown.
View Article and Find Full Text PDFCardiac restitution is an important factor in arrhythmogenesis. Steep positive action potential duration and conduction velocity (CV) restitution slopes promote alternans and reentrant arrhythmias. We examined the consequences of supernormal conduction (characterized by a negative CV restitution slope) on patterns of conduction and alternans in strands of Luo-Rudy model cells and in cultured cardiac cell strands.
View Article and Find Full Text PDFThe restitution properties of cardiac action potential duration (APD) and conduction velocity (CV) are important factors in arrhythmogenesis. They determine alternans, wavebreak, and the patterns of reentrant arrhythmias. We developed a novel approach to characterize restitution using transfer functions.
View Article and Find Full Text PDFThis paper provides a global picture of the bifurcation scenario of the Hindmarsh-Rose model. A combination between simulations and numerical continuations is used to unfold the complex bifurcation structure. The bifurcation analysis is carried out by varying two bifurcation parameters and evidence is given that the structure that is found is universal and appears for all combinations of bifurcation parameters.
View Article and Find Full Text PDFBiol Cybern
November 2008
Most simple neuron models are only able to model traditional spiking behavior. As physiologists discover and classify different electrical phenotypes, computational neuroscientists become interested in using simple phenomenological models that can exhibit these different types of spiking patterns. The Hindmarsh-Rose model is a three-dimensional relaxation oscillator which can show both spiking and bursting patterns and has a chaotic regime.
View Article and Find Full Text PDFWe study the influence of coupling strength and network topology on synchronization behavior in pulse-coupled networks of bursting Hindmarsh-Rose neurons. Surprisingly, we find that the stability of the completely synchronous state in such networks only depends on the number of signals each neuron receives, independent of all other details of the network topology. This is in contrast with linearly coupled bursting neurons where complete synchrony strongly depends on the network structure and number of cells.
View Article and Find Full Text PDF