Indolone-N-oxides have antiplasmodial properties against Plasmodium falciparum at the erythrocytic stage, with IC50 values in the nanomolar range. The mechanism of action of indolone derivatives involves the production of free radicals, which follows their bioreduction by an unknown mechanism. In this study, we hypothesized that human quinone reductase 2 (hQR2), known to act as a flavin redox switch upon binding to the broadly used antimalarial chloroquine, could be involved in the activity of the redox-active indolone derivatives.
View Article and Find Full Text PDFBinding of drugs to plasma proteins, such as albumin, is a major factor which determines their pharmacokinetics and pharmacological effects. Therefore, the interactions between human serum albumin (HSA) and four antimalarial compounds selected in the 2-aryl-3H-indol-3-one series have been investigated using UV-visible, fluorescence and circular dichroism (CD) spectroscopies. Compounds produced a static quenching of the intrinsic fluorescence of HSA.
View Article and Find Full Text PDFThe search for antimalarial compounds continues to be an area of intensive investigation in medicinal chemistry. This review presents the structural variations around the indolone-N-oxide core. From these pharmacomodulation studies, new antiplasmodial agents with various structures have emerged.
View Article and Find Full Text PDFThe synthesis of indolone derivatives and their antiplasmodial activity in vitro against Plasmodium falciparum at the blood stage are described. The 2-aryl-3H-indol-3-ones were synthesized via deoxygenation of indolone-N-oxides. Electrochemical behaviour, antiplasmodial activity and cytotoxicity on human tumor cell lines were compared to those of indolone-N-oxides.
View Article and Find Full Text PDFThere is an urgent need for new antimalarial drugs with novel mechanisms of action on novel targets. Indolone-N-oxides (INODs) display antimalarial properties in vitro and in vivo, but identified leads such as 6-(4-chloro-phenyl)-5-oxy-[1,3]dioxolo[4,5-f]indol-7-one 1, suffer from very poor aqueous solubility. In this study, structural modifications have been made by introducing various amino and bulky groups to produce sufficiently water soluble and active compounds for further pharmacological and pharmacokinetic studies.
View Article and Find Full Text PDFUncatalyzed racemization processes in atropisomeric diphenyl-like frameworks are classically described as the result of the rotation around the pivotal single bond linking two planar frameworks. Severe constraints leading to more or less distorted transition states account for the experimental barrier to atropenantiomerization. In 1988, one of us hypothesized that, in N-aryl-2(1H)-pyrimidin-(thi)ones, a ring-opening/ring-closure process was contributing to the observed racemization process accounting for the lower barriers in the sulfur analogues than in oxygen analogues.
View Article and Find Full Text PDFIndolone-N-oxides (INODs) are bioreducible and possess remarkable anti-malarial activities in the low nanomolar range in vitro against different Plasmodium falciparum (P. falciparum) strains and in vivo. INODs have an original mechanism of action: they damage the host cell membrane without affecting non-parasitized erythrocytes.
View Article and Find Full Text PDFA series of bis-indolone-N-oxides, 1a-f, was prepared from bis(ethynyl)benzenes and o-halonitroaryls and studied for their in vitro antiplasmodial activities against Plasmodium falciparum and representative strains of bacteria and candida as well as for their cytotoxicity against a human tumor cell line (MCF7). They did not cause any haemolysis (300 μgmL(-1)). Of the synthesized bis-indolones, compound 1a had the most potent antiplasmodial activity (IC50=0.
View Article and Find Full Text PDFAn alarming increase in microbial resistance to traditional drugs and classical pharmacophores has spurred the search for new antimicrobial compounds. Indolone-N-oxides (INODs) possess a redox pharmacophore with promising, recently established, antimalarial activities. In this study, the anti-infectious properties of a series of INODs were investigated.
View Article and Find Full Text PDFIn this paper we present the room temperature synthesis of a novel serie of 1,4-disubstituted-1,2,3-triazoles 4a-l by employing the (3+2) cycloaddition reaction of pyrimidinones containing alkyne functions with different model azides in the presence of copper sulphate and sodium ascorbate. To obtain the final triazoles, we also synthesized the major precursors 6-amino-5-cyano-1,4-disubstituted-2(1H)-pyrimidinones 3a-r from ethyl 2,2-dicyanovinylcarbamate derivatives 2a-c and various primary aromatic amines containing an alkyne group. The triazoles were prepared in good to very good yields.
View Article and Find Full Text PDF