Chem Soc Rev
December 2024
Surface-enhanced Raman spectroscopy (SERS) has evolved significantly over fifty years into a powerful analytical technique. This review aims to achieve five main goals. (1) Providing a comprehensive history of SERS's discovery, its experimental and theoretical foundations, its connections to advances in nanoscience and plasmonics, and highlighting collective contributions of key pioneers.
View Article and Find Full Text PDFThe overuse of pesticides results in excessive pesticide residues, posing a potential threat to human health. Herein, this work proposes a SERS substrate for the quantitative analysis of pesticide residues on food surfaces. Au cores are assembled on PS microspheres, followed by the modification of Raman internal standards (1,4-BDT) on the gold core surface and the growth of the Au shell.
View Article and Find Full Text PDFGraphene has been extensively utilized as an electrode material for nonaqueous electrochemical capacitors. However, a comprehensive understanding of the charging mechanism and ion arrangement at the graphene/electrolyte interface remain elusive. Herein, a gap-enhanced Raman spectroscopic strategy is designed to characterize the dynamic interfacial process of graphene with an adjustable number of layers, which is based on synergistic enhancement of localized surface plasmons from shell-isolated nanoparticles and a metal substrate.
View Article and Find Full Text PDFHot carriers injected into semiconductor enables below-bandgap photodetection, thus attracting increasing interest. The performance of hot carrier-based device is directly related to the absorptivity of metal. Several strategies such as surface plasmons, metamaterials, and optical cavities are utilized to enhance the weak intrinsic absorption of the metal.
View Article and Find Full Text PDFBroadband infrared (IR) absorption is sought after for wide range of applications. Graphene can support IR plasmonic waves tightly bound to its surface, leading to an intensified near-field. However, the excitation of graphene plasmonic waves usually relies on resonances.
View Article and Find Full Text PDFWater oxidation is one of the most challenging steps in CO photoreduction, but its influence on CO photoreduction is still poorly understood. Herein, the concept of accelerating the water oxidation kinetics to promote the CO photoreduction is realized by incorporating supramolecular porphyrin nanosheets (NS) into the C N catalyst. As a prototype, porphyrin-C N based van der Waals heterojunctions with efficient charge separation are elaborately designed, in which the porphyrin and C N NS serve as the water oxidation booster and CO reduction center, respectively.
View Article and Find Full Text PDFBreast cancer appears to be one of the leading causes of cancer-related morbidity and mortality for women worldwide. The accurate and rapid diagnosis of breast cancer is hence critical for the treatment and prognosis of patients. With the vibrational fingerprint information and high detection sensitivity, surface-enhanced Raman spectroscopy (SERS) has been extensively applied in biomedicine.
View Article and Find Full Text PDFOxide heterointerfaces with high carrier density can interact strongly with the lattice phonons, generating considerable plasmon-phonon coupling and thereby perturbing the fascinating optical and electronic properties, such as two-dimensional electron gas, ferromagnetism, and superconductivity. Here we use infrared-spectroscopic nanoimaging based on scattering-type scanning near-field optical microscopy (s-SNOM) to quantify the interaction of electron-phonon coupling and the spatial distribution of local charge carriers at the SrTiO/TiO interface. We found an increased high-frequency dielectric constant (ε = 7.
View Article and Find Full Text PDFRaman and infrared (IR) spectroscopy are powerful analytical techniques, but have intrinsically low detection sensitivity. There have been three major steps (i) to advance the optical system of the light excitation, collection, and detection since 1920s, (ii) to utilize nanostructure-based surface-enhanced Raman scattering (SERS) and surface-enhanced infrared absorption (SEIRA) since 1990s, and (iii) to rationally couple (i) and (ii) for maximizing the total detection sensitivity since 2010s. After surveying the history of SERS and SEIRA, we outline the principle of plasmonics and the different mechanisms of SERS and SEIRA.
View Article and Find Full Text PDFOrganic-inorganic halide perovskites are emerging materials for photovoltaic applications with certified power conversion efficiencies (PCEs) over 25%. Generally, the microstructures of the perovskite materials are critical to the performances of PCEs. However, the role of the nanometer-sized grain boundaries (GBs) that universally existing in polycrystalline perovskite films could be benign or detrimental to solar cell performance, still remains controversial.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2020
Nobel metal nanohole arrays have been used extensively in chemical and biological systems because of their fascinating optical properties. Gold nanohole arrays (Au NHAs) were prepared as surface plasmon polariton (SPP) generators for the surface-enhanced sum-frequency generation (SFG) detection of 4-Mercaptobenzonitrile (4-MBN). The angle-resolved reflectance spectra revealed that the Au NHAs have three angle-dependent SPP modes and two non-dispersive localized surface plasmon resonance (LSPR) modes under different structural orientation angles (sample surface orientation).
View Article and Find Full Text PDFSum-frequency generation (SFG) spectroscopy is a highly versatile tool for surface analysis. Improving the SFG intensity per molecule is important for observing low concentrations of surface species and intermediates in dynamic systems. Herein, Shell-Isolated-Nanoparticle-Enhanced SFG (SHINE-SFG) was used to probe a model substrate.
View Article and Find Full Text PDFNanostructure-based surface-enhanced infrared absorption (SEIRA) spectroscopy has attracted tremendous interest as an ultrasensitive detection tool that supplies chemical-fingerprint information. The interactions between molecular vibrations and plasmons lead to not only the enhancement of spectral intensity, but also the distortion of spectral Lorentzian lineshapes into asymmetric Fano-type or more complicated lineshapes in the SEIRA spectra; this effect hampers the correct readout of vibrational frequencies and intensities for an accurate interpretation of the measured spectra and quantitative analysis. In this work, we investigate the Fano interference between molecular vibrations and plasmons based on exact electrodynamic simulations and theoretical models.
View Article and Find Full Text PDFA surface-enhanced Raman scattering-chiral anisotropy (SERS-ChA) effect is reported that combines chiral discrimination and surface Raman scattering enhancement on chiral nanostructured Au films (CNAFs) equipped in the normal Raman scattering Spectrometer. The CNAFs provided remarkably higher enhancement factors of Raman scattering (EFs) for particular enantiomers, and the SERS intensity was proportional to the enantiomeric excesses (ee) values. Except for molecules with mesomeric species, all of the tested enantiomers exhibited high SERS-ChA asymmetry factors (g), ranging between 1.
View Article and Find Full Text PDFPlasmonic optical antennas (POAs), often constructed from gold or silver nanostructures, can enhance the radiation efficiency of emitters coupled to POAs and are applied in surface-enhanced Raman spectroscopy (SERS) and light-emitting devices. Over the past four decades, radiation enhancement factors (REFs) of POA-emitter systems were considered to be difficult to calculate directly and have been predicted indirectly and approximately, assuming POAs are illuminated by electromagnetic plane waves without emitters. The validity of this approximation remains a significant open problem in SERS theory.
View Article and Find Full Text PDFThe fabrication of thin films comprising ordered nanowire assemblies with emerging, precisely defined properties and adjustable functionalities enables highly integrated technologies in the fields of microelectronics and micro system technology, as well as for efficient power generation, storage, and utilization. Shear force, theoretically, is deemed the most promising method for obtaining in-plane, uniaxial thin films comprising nanowires. The success depends largely on the assembly process, and uniform structural control throughout multiple length scales can be achieved only if a rational strategy is executed.
View Article and Find Full Text PDFAfter surface-enhanced Raman spectroscopy (SERS) was initiated over four decades ago, its practical application seems to be far behind the fundamental research that has made tremendous progress. SERS as a highly sensitive technique has not been widely adopted by the materials science and surface science communities or in the market of analytical instruments. In this discussion, we first classify the previous approaches along this direction over the past four decades and divide them into three strategies.
View Article and Find Full Text PDFSurface-enhanced Raman spectroscopy (SERS) and related spectroscopies are powered primarily by the concentration of the electromagnetic (EM) fields associated with light in or near appropriately nanostructured electrically-conducting materials, most prominently, but not exclusively high-conductivity metals such as silver and gold. This field concentration takes place on account of the excitation of surface-plasmon (SP) resonances in the nanostructured conductor. Optimizing nanostructures for SERS, therefore, implies optimizing the ability of plasmonic nanostructures to concentrate EM optical fields at locations where molecules of interest reside, and to enhance the radiation efficiency of the oscillating dipoles associated with these molecules and nanostructures.
View Article and Find Full Text PDFInterparticle spacing was controlled by evaporating water on 2D Au nanoparticles arrays. Relationships among SERS effect, SPR catalysis, and gap distance were experimentally and theoretically studied.
View Article and Find Full Text PDF