Publications by authors named "Enmao Ye"

Cognitive deficits are considered a core component of schizophrenia and may predict functional outcome. However, the neural underpinnings of neuropsychological impairment remain to be fully elucidated. Data of 59 schizophrenia patients and 72 healthy controls from a public resting-state fMRI database was employed in our study.

View Article and Find Full Text PDF

Recent studies have revealed that oligodendrocyte differentiation deficits and de-myelination occur in the brains of schizophrenic patients. Cell cycle proteins play a critical role in modulating oligodendrocyte proliferation and differentiation. In our previous studies, we found that cuprizone, a copper chelant, induces oligodendrocyte loss and demyelination, and this effect can be alleviated by using the atypical antipsychotic drug quetiapine.

View Article and Find Full Text PDF

The impact of chronic cerebral hypoperfusion on resting-state blood oxygen level-dependent signal fluctuations remains unknown. We aimed to determine whether chronic ischemia induces changes in amplitude of low-frequency fluctuations (ALFF) and to investigate the correlation between ALFF and perfusion-weighted magnetic resonance imaging (PWI) parameters in patients with moyamoya disease (MMD). Thirty patients with pre- and postoperative resting-state functional magnetic resonance imaging and PWI were included, and thirty normal controls underwent resting-state functional magnetic resonance imaging.

View Article and Find Full Text PDF

The cuprizone (CPZ) model has been widely used for the studies of de-and remyelination. The CPZ-exposed mice show oligodendrocyte precursor cells (OPCs) increase and mature oligodendrocytes decrease, suggesting an imbalance between proliferation and differentiation of OPCs. In the first experiment of this study, we examined the expression of cell cycle related genes in brains of mice following CPZ administration for 5 weeks by means of microarray assay.

View Article and Find Full Text PDF

Acute sleep restriction heavily influences cognitive function, affecting executive processes such as attention, response inhibition, and memory. Previous neuroimaging studies have suggested a link between hippocampal activity and short-term memory function. However, the specific contribution of the hippocampus to the decline of short-term memory following sleep restriction has yet to be established.

View Article and Find Full Text PDF

Objective: To investigate response inhibition after total sleep deprivation (TSD) and the restorative effects of one night of recovery sleep (RS).

Methods: Fourteen healthy male participants performed a visual Go/NoGo task, and electroencephalogram recordings were conducted at five time points: (1) baseline, (2) after 12 h of TSD, (3) after 24 h of TSD, (4) after 36 h of TSD, and (5) following 8 h of RS. The dynamic changes in response inhibition during TSD and after 8 h of RS were investigated by examining the NoGo-N2 and NoGo-P3 event-related potential components.

View Article and Find Full Text PDF

Methamphetamine (METH), a substance with a high potential for abuse and addiction, is a serious worldwide public health problem. METH addicts often show extreme paranoia, anxiety, and depression. Thus, there is no effective medication for the treatment of METH-induced abnormalities.

View Article and Find Full Text PDF

The superficial amygdala (SFA) is important in human emotion/affective processing via its strong connection with other limbic and cerebral cortex for receptive and expressive emotion processing. Few studies have investigated the functional connectivity changes of the SFA under extreme conditions, such as prolonged sleep loss, although the SFA showed a distinct functional connectivity pattern throughout the brain. In this study, resting-state functional magnetic resonance imaging (rs-fMRI) was employed to investigate the changes of SFA-cortical functional connectivity after 36 hr of total sleep deprivation (TSD).

View Article and Find Full Text PDF

Interactions between large-scale brain networks have received most attention in the study of cognitive dysfunction of human brain. In this paper, we aimed to test the hypothesis that the coupling strength of large-scale brain networks will reflect the pressure for sleep and will predict cognitive performance, referred to as sleep pressure index (SPI). Fourteen healthy subjects underwent this within-subject functional magnetic resonance imaging (fMRI) study during rested wakefulness (RW) and after 36 h of total sleep deprivation (TSD).

View Article and Find Full Text PDF

Advanced neuroimaging studies have identified brain correlates of pathological impulsivity in a variety of neuropsychiatric disorders. However, whether and how these spatially separate and functionally integrated neural correlates collectively contribute to aberrant impulsive behaviors remains unclear. Building on recent progress in neuroeconomics toward determining a biological account of human behaviors, we employed resting-state functional MRI to characterize the nature of the links between these neural correlates and to investigate their impact on impulsivity.

View Article and Find Full Text PDF

Previous studies have suggested that heroin addiction is associated with structural and functional brain abnormalities. However, it is largely unknown whether these characteristics of brain abnormalities would be persistent or restored after long periods of abstinence. Considering the very high rates of relapse, we hypothesized that there may exist some latent neural vulnerabilities in abstinent heroin users.

View Article and Find Full Text PDF

The default mode network (DMN) plays an important role in the physiopathology of schizophrenia. Previous studies have suggested that the cerebellum participates in higher-order cognitive networks such as the DMN. However, the specific contribution of the cerebellum to the DMN abnormalities in schizophrenia has yet to be established.

View Article and Find Full Text PDF

Objectives: Recent neuroimaging studies have identified a potentially critical role of the amygdala in disrupted emotion neurocircuitry in individuals after total sleep deprivation (TSD). However, connectivity between the amygdala and cerebral cortex due to TSD remains to be elucidated. In this study, we used resting-state functional MRI (fMRI) to investigate the functional connectivity changes of the basolateral amygdala (BLA) and centromedial amygdala (CMA) in the brain after 36 h of TSD.

View Article and Find Full Text PDF
Article Synopsis
  • Addiction is increasingly viewed as a disease related to abnormal learning and memory, with a significant focus on impulsive decision-making.
  • Studies have largely emphasized non-declarative memory systems in addiction, while the role of declarative memory, especially related to the hippocampus, has been overlooked.
  • The current research highlights altered connectivity in the hippocampal network due to drug addiction and its significant correlation with impulsivity, suggesting that understanding declarative memory can provide insights into impulsive behaviors in addiction.
View Article and Find Full Text PDF

Objectives: The thalamus and cerebral cortex are connected via topographically organized, reciprocal connections, which hold a key function in segregating internally and externally directed awareness information. Previous task-related studies have revealed altered activities of the thalamus after total sleep deprivation (TSD). However, it is still unclear how TSD impacts on the communication between the thalamus and cerebral cortex.

View Article and Find Full Text PDF

Impulsivity is a pathological hallmark of drug addiction. However, little is known about the neuropsychological underpinnings of this impaired impulsive control network on drug addiction. Twenty two abstinent heroin dependent (HD) subjects and 15 cognitively normal (CN) subjects participated in this study.

View Article and Find Full Text PDF

Heroin, like various illicit substances, has a negative impact on the frontal cognitive function after repeated abuse. We used functional magnetic resonance imaging (fMRI) to examine the neural substrates of response inhibition and competition in 18 healthy controls and assess the frontal neurocognition in 30 abstinent heroin dependents (AHD) as they performed a Go/NoGo Association task with reaction times recorded spontaneously. The neural response which was induced by response inhibition was prominent in the midline structure, specifically the bilateral medial prefrontal gyrus and anterior cingulated cortex, as well as the left middle frontal gyrus, insula, bilateral inferior frontal gyrus and limbic system.

View Article and Find Full Text PDF