Publications by authors named "Enliu Hong"

Optoelectronic devices with imaging and recognition capabilities are crucial for developing artificial visual system (AVS). Bias-switchable photodetection and photosynaptic devices have been developed using 2D perovskite oxide/organic heterojunctions. This unique structure allows for modulated carrier dynamics under varied bias conditions, enabling the devices to function as photodetectors without bias and as photosynapses with bias.

View Article and Find Full Text PDF

Ruddlesden-Popper quasi-2D perovskites represent robust candidates for optoelectronic applications, achieving a delicate balance between outstanding photoresponse and stability. However, mitigating the internal defects in polycrystalline films remains challenging, and their optoelectronic performances still lag behind that of their 3D counterparts. This work highlights the profound impact of defect passivation at the buried interface and grain boundaries through a dual-cation-release strategy.

View Article and Find Full Text PDF

Deterministic integration of phase-pure Ruddlesden-Popper (RP) perovskites has great significance for realizing functional optoelectronic devices. However, precise fabrications of artificial perovskite heterostructures with pristine interfaces and rational design over electronic structure configurations remain a challenge. Here, the controllable synthesis of large-area ultrathin single-crystalline RP perovskite nanosheets and the deterministic fabrication of arbitrary 2D vertical perovskite heterostructures are reported.

View Article and Find Full Text PDF

The imitation of human visual memory demands the multifunctional integration of light sensors similar to the eyes, and image memory, similar to the brain. Although humans have already implemented electronic devices with visual memory functions, these devices require a combination of various components and logical circuits. However, the combination of visual perception and high-performance information storage capabilities into a single device to achieve visual memory remains challenging.

View Article and Find Full Text PDF

Photodetectors (PDs) composed of lead-free metal halide perovskites have been a shining topic in optoelectronics. However, it is debatable whether perovskites are an n-type or p-type semiconductor with a direct or indirect band gap. Furthermore, to date, little research has been conducted on lead-free metal halide perovskites with color-sensing abilities.

View Article and Find Full Text PDF

2D halide perovskites feature solution processability and tunable optoelectronic properties for optoelectronic applications. However, the controllable fabrication of halide perovskite heterojunction still remains a challenge. Herein, through controlling surface tension and nucleation driving force, a fast and facile aqueous floating growth is demonstrated to obtain a series of large-area single-crystalline 2D perovskite microplates at room temperature.

View Article and Find Full Text PDF

Photodetectors are light sensors in widespread use in image sensing, optical communication, and consumer electronics. In current smart optoelectronic technology, conventional semiconductors have encountered a bottleneck caused by inflexibility and opacity. With the ever-increasing demands for versatile optoelectronic applications, perovskite-type 2D materials demonstrate great potential for advanced photodetectors inspired by molecularly thin 2D materials.

View Article and Find Full Text PDF