Traditional wound closure methods often present several issues, including additional puncture wounds, adverse effects from anesthesia, and noticeable scarring. Inspired by embryonic wound healing, a Janus hydrogel (PG/Au-Asp@PCM) is designed to manipulate non-invasive wound closure by photothermal-responsive self-contraction of PG/Au-Asp@PCM, which is attributed to the shape memory behavior of PG/Au-Asp@PCM under near-infrared (NIR). Wherein, gelatin acts as a thermally reversible "switch" and polyacrylamide creates stable and cross-linked "net-points".
View Article and Find Full Text PDFAdv Healthc Mater
February 2025
Constructing hemostats capable of effectively controlling severe hemorrhage from irregular wounds presents significant challenges and imperatives. In this study, a novel approach is introduced using nanofibrous chitin microspheres (NCM) that are compressed to 60% strain (NCM-60%) to amplify their water-initiated expansion performance. This unique capacity allows NCM-60% to efficiently conform to and fill irregular bleeding cavities, even those of varying depths and curvatures, thereby promoting rapid blood coagulation at deep hemorrhage sites.
View Article and Find Full Text PDFBreaking the constraints of thrombin during storage and in vivo applications remains challenging because of its low stability and sensitivity to environmental temperature and acidity. Herein, an artificial plateletoid is developed for in situ thrombin generation through a co-incubation approach with plasma in vitro, utilizing a silk fibroin/Ca interface, to enhance the activity and stability of the generated thrombin. Notably, the enzymatic activity of the plateletoid thrombin platform is as high as 30 U g, leading to rapid clotting within 55 s, and it persisted for at least 90 days at as high as 37 °C.
View Article and Find Full Text PDFIn the treatment of thrombosis, conventional nanocarriers inevitably have problems, such as adverse reactions and difficulties in synthesis. Inspired by the concept of 'medicine food homology,' we extracted and purified natural exosomes from mulberry leaves as carriers for the delivery of urokinase-type plasminogen activator (uPA) for targeted therapy. The obtained mulberry leaf exosomes (MLE) possessed a desirable hydrodynamic particle size (119.
View Article and Find Full Text PDFDeveloping an oral in situ-forming hydrogel that targets the inflamed intestine to suppress bleeding ulcers and alleviate intestinal inflammation is crucial for effectively treating ulcerative colitis (UC). Here, inspired by sandcastle worm adhesives, we proposed a water-immiscible coacervate (EMNs-gel) with a programmed coacervate-to-hydrogel transition at inflammatory sites composed of dopa-rich silk fibroin matrix containing embedded inflammation-responsive core-shell nanoparticles. Driven by intestinal peristalsis, the EMNs-gel can be actuated forward and immediately transform into a hydrogel once contacting with the inflamed intestine to yield strong tissue adhesion, resulting from matrix metalloproteinases (MMPs)-triggered release of Fe from embedded nanoparticles and rearrangement of polymer network of EMNs-gel on inflamed intestine surfaces.
View Article and Find Full Text PDFThe development of thrombolytic drug carriers capable of thrombus-targeting, prolonged circulation time, intelligent responsive release, and the ability to inhibit thrombotic recurrences remains a promising but significant challenge. To tackle this, an artificial polysaccharide microvesicle drug delivery system (uPA-CS/HS@RGD-ODE) was constructed. It is composed of cationic chitosan and anionic heparin assembled in a layer by layer structure, followed by surface modification using RGD peptide and 2-(N-oxide-N,N-diethylamino) ethylmethacrylate (ODE) before encapsulation of urokinase-type plasminogen activator (uPA).
View Article and Find Full Text PDFThe Helicobacter pylori infection in the stomach is the key reason for gastric mucosal bleeding. Eliminating gastric Helicobacter pylori by oral treatment remains difficult due to the presence of the gastric mucosal layer, which acts as a physical barrier to drugs via oral administration. In this study, a magnetic-navigable microneedle drug delivery platform (MNsD) for oral administration, featuring differential dual-mode drug release rate, was designed to fulfil rapid gastric hemostasis and overcome the gastric barriers for long-lasting Helicobacter pylori inhibition in stomach.
View Article and Find Full Text PDFThrombosis can cause life-threatening disorders. Unfortunately, current therapeutic methods for thrombosis using injecting thrombolytic medicines systemically resulted in unexpected bleeding complications. Moreover, the absence of practical imaging tools for thrombi raised dangers of undertreatment and overtreatment.
View Article and Find Full Text PDFGlobal public health is seriously threatened by thrombotic disorders because of their high rates of mortality and disability. Most thrombolytic agents, especially protein-based pharmaceuticals, have a short half-life in circulation, reducing their effectiveness in thrombolysis. The creation of an intelligent drug delivery system that delivers medication precisely and releases it under regulated conditions at nearby thrombus sites is essential for effective thrombolysis.
View Article and Find Full Text PDFArterial thrombosis is a critical thrombotic disease that poses a significant threat to human health. However, the existing clinical treatment of arterial thrombosis lacks effective targeting and precise drug release capability. In this study, we developed a system for targeted delivery and on-demand release in arterial thrombosis treatment.
View Article and Find Full Text PDFACS Appl Mater Interfaces
October 2023
Bioadhesives have been widely used in hemostasis and tissue repair, but the overmoist and wet nature of wound surface (due to the presence of blood and/or wound exudate) has led to poor wet adhesion of bioadhesives, which interrupts the continuous care of wounds. Here, a thirsty polyphenolic silk granule (), which absorbs blood and exudate to self-convert to robust bioadhesives () , was facilely developed in this study for enhanced wet adhesion toward hemostasis and tissue repair. could shield wounds' wetness and immediately convert itself to to seal wounds for hemorrhage control and wound healing.
View Article and Find Full Text PDFThe diabetic chronic wound healing is extremely restricted by issues such as hyperglycemia, excessive exudate and reactive oxygen species (ROS), and bacterial infection, causing significant disability and fatality rate. Herein, the chitosan/silk fibroin nanofibers-based hierarchical 3D sponge (CSSF-P/AuGCs) with effective exudate transfer and wound microenvironment modulation are produced by integrating cascade reactor (AuGC) into sponge substrates with parallel-arranged microchannels. When applied to diabetic wounds, the uniformly parallel-arranged microchannels endow CSSF-P/AuGCs with exceptional exudate absorption capacity, keeping the wound clean and moist; additionally, AuGCs efficiently depletes glucose in wounds to generate HO, which is then converted into HClO via cascade catalytic reaction to eliminate bacterial infection and reduce inflammation.
View Article and Find Full Text PDFOptimal wound healing requires a wet microenvironment without over-hydration. Inspired by capillarity and transpiration, we have developed a sandwich-like fibers/sponge dressing with continuous exudate drainage to maintain appropriate wound moisture. This dressing is prepared by integrating a three-layer structure using the freeze-drying method.
View Article and Find Full Text PDFTissue adhesives have been widely used in biomedical applications. However, the presence of a hydrated layer on the surface of wet tissue severely hinders their adhesion capacities, resulting in ineffective wound treatment. To address this issue, a dry particle dressing (plas@SF/tann-hydro-pwd) capable of removing the hydrated layer and converting in situ to bioadhesives (plas@SF/tann-hydro-gel) was fabricated via simple physical mixing based on the hydrophobic-hydrogen bonding synergistic effect and Schiff-base reaction.
View Article and Find Full Text PDFUncontrolled bleeding is the leading cause of death, and the death risk of bleeding from coagulopathy is even higher. By infusing the relevant coagulation factors, bleeding in patients with coagulopathy can be clinically treated. However, there are not many emergency hemostatic products accessible for coagulopathy patients.
View Article and Find Full Text PDFSkin wound healing in dynamic environments remains challenging. Conventional gels are not ideal dressing materials for wound healing due to difficulties in completely sealing wounds and the inability to deliver drugs quickly and precisely to the injury. To tackle these issues, we propose a multifunctional silk gel that rapidly forms strong adhesions to tissue, has excellent mechanical properties, and delivers growth factors to the wound.
View Article and Find Full Text PDFResearch (Wash D C)
May 2023
Efficient hemostasis during emergency trauma with massive bleeding remains a critical challenge in prehospital settings. Thus, multiple hemostatic strategies are critical for treating large bleeding wounds. In this study, inspired by bombardier beetles to eject toxic spray for defense, a shape-memory aerogel with an aligned microchannel structure was proposed, employing thrombin-carrying microparticles loaded as a built-in engine to generate pulse ejections for enhanced drug permeation.
View Article and Find Full Text PDFSince hemostats are likely to be flushed off a wound by a massive gushing of blood, achieving rapid and effective hemostasis in complex bleeding wounds with powder hemostats continues to be a significant therapeutic challenge. In order to counter the flushing effect of gushing blood, a gas-jet propelled powder hemostat ((COL/PS)@CaCO-T-TXA) has been developed. (COL/PS)@CaCO-T-TXA dives into the deep bleeding sites of complex wounds for targeted hemostasis.
View Article and Find Full Text PDFAchieving rapid hemostasis in complex and deep wounds with secluded hemorrhagic sites is still a challenge because of the difficulty in delivering hemostats to these sites. In this study, a Janus particle, SEC-Fe@CaT with dual-driven forces, bubble-driving, and magnetic field- (MF-) mediated driving, was prepared via loading of FeO on a sunflower sporopollenin exine capsule (SEC), and followed by growth of flower-shaped CaCO clusters. The bubble-driving forces enabled SEC-Fe@CaT to self-diffuse in the blood to eliminate agglomeration, and the MF-mediated driving force facilitated the SEC-Fe@CaT countercurrent against blood to access deep bleeding sites in the wounds.
View Article and Find Full Text PDFComplex yet lethal wounds with uncontrollable bleeding hinder conventional hemostats from clotting blood at the source or deep sites of injury vasculature, thereby causing massive blood loss and significantly increased mortality. Inspired by the attack action of torpedoes, we synthesized microcluster (MC) colloidosomes equipped with magnetic-mediated navigation and "blast" systems to deliver hemostats into the cavity of vase-type wounds. CaCO/FeO (CF) microparticles functionalized with Arg-Gly-Asp (RGD) modified polyelectrolyte multilayers were co-assembled with oppositely charged zwitterionic carbon dots (CDs) to form MC colloidosomes, which were loaded with thrombin and protonated tranexamic acid (TXA-NH ).
View Article and Find Full Text PDFTraumatic hemorrhage can be a fatal event, particularly when large quantities of blood are lost in a short period of time. Therefore, hemostasis has become a crucial part of emergency treatment. For small wounds, hemostasis can be achieved intrinsically depending on the body's own blood coagulation mechanism; however, for large-area wounds, particularly battlefield and complex wounds, materials delivering rapid and effective hemostasis are required.
View Article and Find Full Text PDFSevere bleeding in perforating and inflected wounds with forky cavities or fine voids encountered during prehospital treatments and surgical procedures is a complex challenge. Therefore, we present a novel hemostatic strategy based on magnetic field-mediated guidance. The biphasic Janus magnetic particle (MSS@FeO-T) comprised aggregates of α-FeO nanoparticles (FeO NPs) as the motion actuator, negatively modified microporous starch (MSS) as the base hemostatic substrate, and thrombin as the loaded hemostatic drug.
View Article and Find Full Text PDFAcute hemorrhage that occurs after trauma is a life-threatening condition. Hence, to halt massive bleeding, there is a critical need to develop a suitable therapy. In this study, we developed self-propelling chestnut-like particles (Pro-MAS) comprising a macro-acanthosphere (MAS) coated with calcium carbonate and protonated tranexamic acid to puncture red blood cells (RBCs) and thus activate hemostasis.
View Article and Find Full Text PDFOverexploitation of antibiotics increases the emergence of multidrug-resistant agents (MDRAs), which may potentially cause a global crisis with severe health consequences. Hence, there is great demand for next-generation antibacterial platforms based on antibiotic-free strategies or targeted therapies to mitigate the emergence of MDRAs. Herein, an all-in-one hollow nanoworm (A-Fe/AuAg@PDA) is developed with a core comprising citrate-capped Au-Ag nanoparticles (Cit-AuAg NPs) loaded with FeO and an l-arginine (L-Arg)-modified polydopamine (PDA) outer shell, possessing exceptional magnetic-targeting ability and a photothermal therapeutic effect.
View Article and Find Full Text PDFACS Appl Mater Interfaces
April 2021
Given that many people suffer from extensive skin damage, wound repair has drawn tremendous attention in research. Among the various assistant dressing materials that promote healing, a porcine acellular dermal matrix (PADM), as a skin substitute, can efficiently accelerate healing by promoting cell migration and proliferation. However, a simple, low-cost preparation process remains a challenge facing PADM development, particularly because of the inferior elasticity.
View Article and Find Full Text PDF