Traditional rice landraces grown under on-farm conservation conditions by indigenous farmers are extremely important for future crop improvement. However, little is known about how the natural selection and agriculture practices of indigenous farmers interact to shape and change the population genetics of rice landraces grown under on-farm conservation conditions during the domestication. In this study, we sequenced DNA from 108 core on-farm conserved rice landraces collected from the ethnic minority regions of Yunnan, China, including 56 accessions collected in 1980 and 52 accessions collected in 2007 and obtained 2,771,245 of credible SNPs.
View Article and Find Full Text PDFRice landraces, a genetic reservoir for varietal improvement, are developed by farmers through artificial selection during the long-term domestication process. To efficiently conserve, manage, and use such germplasm resources, an understanding of the genetic structure and differentiation of local rice landraces is required. In this study, we analyzed 188 accessions of rice landraces collected from localities across an altitudinal gradient from 425 to 2, 274 m above sea level in Yunnan Province, China using ten target genes and 48 SSR markers.
View Article and Find Full Text PDFDiachronic analysis showed no significant changes in the level of genetic diversity occurred over the past 27 years' domestication, which indicated genetic diversity was successfully maintained under on-farm conservation. Rice (Oryza sativa L.) is one of the earliest domesticated crop species.
View Article and Find Full Text PDFTo reveal the genetic variation of rice paddy landraces across 30 years, we compared the genetic variation of between 6 paddy rice landraces grown in Yuanyang Hani's terraced fields in Yuanyang County, Yunnan Province in the 1970s (past-grown landraces) and 6 paired ones that have been grown during the past decade (current-grown landraces) using 60 SSR markers. The results showed that one to four alleles were amplified in 60 loci and 159 alleles in all the landraces tested. The number of alleles from the current-grown landraces decreased by 7 alleles compared to the past-grown landraces.
View Article and Find Full Text PDF