High doses of ozone (O) and nitrogen dioxide (NO) cause damage and cell death in plants. These two gases are among the most harmful air pollutants for ecosystems and therefore it is important to understand how plant resistance or sensitivity to these gases work at the molecular level and its genetic control. We compared transcriptome data from O and NO fumigations to other cell death related treatments, as well as individual marker gene transcript level in different accessions.
View Article and Find Full Text PDFPlants live in a world of changing environments, where they are continuously challenged by alternating biotic and abiotic stresses. To transfer information from the environment to appropriate protective responses, plants use many different signaling molecules and pathways. Reactive oxygen species (ROS) are critical signaling molecules in the regulation of plant stress responses, both inside and between cells.
View Article and Find Full Text PDFThe identification and antibiotic susceptibility of two clinical isolates of from bloodstream infections were determined. This microorganism is rarely pathogenic, and the findings are presented here to promote the detection and awareness of this infection. The bacteria were obtained from one patient with pressure sores and another with a malignant gastric tumor.
View Article and Find Full Text PDFBackground: Light-initiated chemiluminescent assay (LiCA) is a new homogeneous immunoassay. The aim of this study was to evaluate the analytical and clinical performance of the assays for the detection of thyroid hormones based on the fully automated LiCA 800 analyzer.
Methods: Analytical validations of the LiCA thyroid assays (TSH, FT3, FT4, T3, and T4) included precision, linearity, analytical sensitivity, interference, and method comparison applying the protocols of the Clinical and Laboratory Standards Institute (CLSI).
Strigolactones (SLs) are carotenoid-derived plant hormones that control shoot branching and communications between host plants and symbiotic fungi or root parasitic plants. Extensive studies have identified the key components participating in SL biosynthesis and signalling, whereas the catabolism or deactivation of endogenous SLs in planta remains largely unknown. Here, we report that the Arabidopsis carboxylesterase 15 (AtCXE15) and its orthologues function as efficient hydrolases of SLs.
View Article and Find Full Text PDFTotally, 48 loci responsible for six spike-related traits were identified in wheat, and a major locus QGl-4A for grain length was mapped and validated for marker-assisted selection in breeding. Wheat yield is determined by the number of spikes, number of grains per spike (GN), and one-thousand kernel weight (TKW), among which GN and TKW are greatly related to the spike development and thus the spike-related traits, including spike length (SL), number of spikelet per spike (SN), grain length (GL) and grain width (GW). To identify the key loci governing the spike-related traits (SL, SN, GN, TKW, GL and GW), we conducted the quantitative trait loci (QTL) analysis combined with wheat 660K SNP chip and Kompetitive allele-specific PCR (KASP) assay, using the F and F populations derived from Luohan6 (LH6) with big spike and grain and Zhengmai366 with small spike and grain, and identified a total of 48 QTLs on 18 chromosomes.
View Article and Find Full Text PDFPlants utilize intracellular nucleotide-binding leucine-rich repeat domain-containing receptors (NLRs) to recognize pathogen effectors and induce a robust defense response named effector-triggered immunity (ETI). The Arabidopsis NLR protein HOPZ-ACTIVATED RESISTANCE 1 (ZAR1) forms a precomplex with HOPZ-ETI-DEFICIENT 1 (ZED1), a receptor-like cytoplasmic kinase (RLCK) XII-2 subfamily member, to recognize the Pseudomonas syringae effector HopZ1a. We previously described a dominant mutant of Arabidopsis ZED1, zed1-D, which displays temperature-sensitive autoimmunity in a ZAR1-dependent manner.
View Article and Find Full Text PDFBackground: type 2 diabetes mellitus (T2DM) is a complicated disease that can affect bone health, but the change in bone biochemical markers caused by T2DM was controversial, so the aim of this study was to investigate whether there was a discrepancy in the levels of bone biochemical markers between postmenopausal women with T2DM and non-diabetic women and to explore the relationship between the level of glycosylated hemoglobin A1c (HbA1c) and bone biochemical markers in these subjects.
Methods: A total of 237 type 2 diabetic postmenopausal women visiting the First Affiliated Hospital of Anhui Medical University from January 2017 to October 2018 and 93 healthy postmenopausal women were retrospectively enrolled. The differences in the levels of bone biochemical markers between patients and controls were analyzed by one-way ANOVA or chi-square test.
Induction of pluripotent cells termed callus by auxin represents a typical cell fate change required for plant in vitro regeneration; however, the molecular control of auxin-induced callus formation is largely elusive. We previously identified four Arabidopsis auxin-inducible Lateral Organ Boundaries Domain (LBD) transcription factors that govern callus formation. Here, we report that Arabidopsis basic region/leucine zipper motif 59 (AtbZIP59) transcription factor forms complexes with LBDs to direct auxin-induced callus formation.
View Article and Find Full Text PDFAuxin-induced callus formation represents an important cell reprogramming process during in vitro regeneration of plants, in which the pericycle or pericycle-like cells within plant organs are reprogrammed into the pluripotent cell mass termed callus that is generally required for subsequent regeneration of root or shoot. However, the molecular events behind cell reprogramming during auxin-induced callus formation are largely elusive. We previously identified that auxin-induced LATERAL ORGAN BOUNDARIES DOMAIN (LBD) transcription factors act as the master regulators to trigger auxin-induced callus formation.
View Article and Find Full Text PDFSilver birch (Betula pendula) is a pioneer boreal tree that can be induced to flower within 1 year. Its rapid life cycle, small (440-Mb) genome, and advanced germplasm resources make birch an attractive model for forest biotechnology. We assembled and chromosomally anchored the nuclear genome of an inbred B.
View Article and Find Full Text PDFToll-like receptors (TLRs) are key factors in the innate immune system and initiate an inflammatory response to foreign pathogens, such as bacteria, fungi and viruses. TLR4-mediated signaling has been implicated in tumor cell proliferation and apoptosis in numerous cancers. The present study aimed to investigate the biological effect of TLR4 on the proliferation and apoptosis of human liver cancer cells and the mechanisms responsible for the regulation of cellular responses following TLR4 gene knockdown.
View Article and Find Full Text PDFThe cuticle is the outer physical barrier of aerial plant surfaces and an important interaction point between plants and the environment. Many environmental stresses affect cuticle formation, yet the regulatory pathways involved remain undefined. We used a genetics and gene expression analysis in Arabidopsis thaliana to define an abscisic acid (ABA) signaling loop that positively regulates cuticle formation via the core ABA signaling pathway, including the PYR/PYL receptors, PP2C phosphatase, and SNF1-Related Protein Kinase (SnRK) 2.
View Article and Find Full Text PDFAs plants are sessile organisms that have to attune their physiology and morphology continuously to varying environmental challenges in order to survive and reproduce, they have evolved complex and integrated environment-cell, cell-cell, and cell-organelle signalling circuits that regulate and trigger the required adjustments (such as alteration of gene expression). Although reactive oxygen species (ROS) are essential components of this network, their pathways are not yet completely unravelled. In addition to the intrinsic chemical properties that define the array of interaction partners, mobility, and stability, ROS signalling specificity is obtained via the spatiotemporal control of production and scavenging at different organellar and subcellular locations (e.
View Article and Find Full Text PDFBackground: To survive in a changing environment plants constantly monitor their surroundings. In response to several stresses and during photorespiration plants use reactive oxygen species as signaling molecules. The Arabidopsis thaliana catalase2 (cat2) mutant lacks a peroxisomal catalase and under photorespiratory conditions accumulates H2O2, which leads to activation of cell death.
View Article and Find Full Text PDFApoplast, the diffusional space between plant cell plasma membranes, is an important medium for signaling within and between the cells. Apoplastic reactive oxygen species (ROS) are crucial signaling molecules in various biological processes. ROS signaling is interconnected with the response to several hormones, including jasmonic acid (JA), salicylic acid (SA) and ethylene.
View Article and Find Full Text PDFAs multifaceted molecules, reactive oxygen species (ROS) are known to accumulate in response to various stresses. Ozone (O3 ) is an air pollutant with detrimental effect on plants and O3 can also be used as a tool to study the role of ROS in signalling. Genetic variation of O3 sensitivity in different Arabidopsis accessions highlights the complex genetic architecture of plant responses to ROS.
View Article and Find Full Text PDFBMC Plant Biol
June 2014
Background: Reactive oxygen species (ROS) are used by plants as signaling molecules during stress and development. Given the amount of possible challenges a plant face from their environment, plants need to activate and prioritize between potentially conflicting defense signaling pathways. Until recently, most studies on signal interactions have focused on phytohormone interaction, such as the antagonistic relationship between salicylic acid (SA)-jasmonic acid and cytokinin-auxin.
View Article and Find Full Text PDF