Publications by authors named "Eniko Gyorgy"

Major research efforts are being carried out for the technological advancement to an energetically sustainable society. However, for the full commercial integration of electrochemical energy storage devices, not only materials with higher performance should be designed and manufactured but also more competitive production techniques need to be developed. The laser processing technology is well extended at the industrial sector for the versatile and high throughput modification of a wide range of materials.

View Article and Find Full Text PDF

Several technological routes are being investigated for improving the energy storage capability and power delivery of electrochemical capacitors. In this work, ternary hybrid electrodes composed of conducting graphene/reduced graphene oxide (rGO), which store charge mainly through electric double-layer mechanisms, covered by NiO nanostructures, for adding pseudocapacitance, were fabricated through a matrix assisted pulsed laser evaporation technique. The incorporation of multiwall carbon nanotubes (MWCNTs) provokes an increase of the porosity and thus, a substantial enhancement of the electrodes' capacitance (from 4 to 20 F cm at 10 mV s).

View Article and Find Full Text PDF

Graphene nano-walls (GNWs) are promising materials that can be used as an electrode in electrochemical devices. We have grown GNWs by inductively-coupled plasma-enhanced chemical vapor deposition on stainless steel (AISI304) substrate. In order to enhance the super-capacitive properties of the electrodes, we have deposited a thin layer of MnO₂ by electrodeposition method.

View Article and Find Full Text PDF

The electronic and optical properties of two-dimensional layered materials allow the miniaturization of nanoelectronic and optoelectronic devices in a competitive manner. Even larger opportunities arise when two or more layers of different materials are combined. Here, we report on an ultrafast energy efficient strategy, using laser irradiation, which allows bulk synthesis of crystalline single-layered lead iodide in the cavities of carbon nanotubes by forming cylindrical van der Waals heterostructures.

View Article and Find Full Text PDF

N-doped reduced graphene oxide (RGO) has been prepared in bulk form by laser irradiation of graphene oxide (GO) dispersed in an aqueous solution of ammonia. A pulsed Nd:YAG laser with emission wavelengths in the infrared (IR) 1064 nm, visible (Vis) 532 nm, and ultraviolet (UV) 266 nm spectral regions was employed for the preparation of the N-doped RGO samples. Regardless of the laser energy employed, the resulting material presents a higher fraction of pyrrolic nitrogen compared to nitrogen atoms in pyridinic and graphitic coordination.

View Article and Find Full Text PDF

Background: In this work the chemical structure of dextran-iron oxide thin films was reported. The films were obtained by MAPLE technique from composite targets containing 10 wt. % dextran with 1 and 5 wt.

View Article and Find Full Text PDF

Papain thin films were synthesised by matrix assisted and conventional pulsed laser deposition (PLD) techniques. The targets submitted to laser radiation consisted on a frozen composite obtained by dissolving the biomaterials in distilled water. For the deposition of the thin films by conventional PLD pressed biomaterial powder targets were submitted to laser irradiation.

View Article and Find Full Text PDF