Continuous manufacturing is gaining increasing interest in the pharmaceutical industry, also requiring real-time and non-destructive quality monitoring. Multiple studies have already addressed the possibility of surrogate in vitro dissolution testing, but the utilization has rarely been demonstrated in real-time. Therefore, in this work, the in-line applicability of an artificial intelligence-based dissolution surrogate model is developed the first time.
View Article and Find Full Text PDFBoth biphasic dissolution and simultaneous dissolution-permeation (D-P) systems have great potential to improve the in vitro-in vivo correlation compared to simple dissolution assays, but the assay conditions, and the evaluation methods still need to be refined in order to effectively use these apparatuses in drug development. Therefore, this comprehensive study aimed to compare the predictive accuracy of small-volume (16-20 mL) D-P system and small-volume (40-80 mL) biphasic dissolution apparatus in bioequivalence prediction of five aripiprazole (ARP) containing marketed drug products. Assay conditions, specifically dose dependence were studied to overcome the limitations of both small-scale systems.
View Article and Find Full Text PDFThe purpose of this study was to investigate the applicability of the Gastrointestinal Simulator (GIS), a multi-compartmental dissolution model, to predict the in vivo performance of Biopharmaceutics Classification System (BCS) Class IIa compounds. As the bioavailability enhancement of poorly soluble drugs requires a thorough understanding of the desired formulation, the appropriate in vitro modelling of the absorption mechanism is essential. Four immediate release ibuprofen 200 mg formulations were tested in the GIS using fasted biorelevant media.
View Article and Find Full Text PDFParticle size reduction is a commonly used process to improve the solubility and the dissolution of drug formulations. The solubility of a drug in the gastrointestinal tract is a crucial parameter, because it can greatly influence the bioavailability. This work provides a comprehensive investigation of the effect of the particle size, pH, biorelevant media and polymers (PVA and PVPK-25) on the solubility and dissolution of drug formulations using three model compounds with different acid-base characteristics (papaverine hydrochloride, furosemide and niflumic acid).
View Article and Find Full Text PDFCreating supersaturating drug delivery systems to overcome the poor aqueous solubility of active ingredients became a frequent choice for formulation scientists. Supersaturation as a solution phenomenon is, however, still challenging to understand, and therefore many recent publications focus on this topic. This work aimed to investigate and better understand the pH dependence of supersaturation of telmisartan (TEL) at a molecular level and find a connection between the physicochemical properties of the active pharmaceutical ingredient (API) and the ability to form supersaturated solutions of the API.
View Article and Find Full Text PDFTraditionally, excipients have been considered in drug development from the perspective of their influence on drug solubility, manufacturability, and ability to control in vitro and in vivo drug release. These effects have been largely evaluated through studies involving in vitro dissolution methods. However, there is a growing awareness that what had previously been considered biologically inert excipients can exert numerous in vivo effects.
View Article and Find Full Text PDFPurpose: The aim of our work was to develop a biorelevant dissolution method for a better understanding of the in vivo performance of delayed-release tablet formulations.
Methods: The typical pH profile and residence times in the stomach and small intestine were determined in fasted conditions based on the published results of swallowable monitoring devices. Then, a multi-stage pH shift dissolution method was developed by adding different amounts of phosphate-based buffer solutions to the initial hydrochloric acid solution.
The work aimed to develop the Absorption Driven Drug Formulation (ADDF) concept, which is a new approach in formulation development to ensure that the drug product meets the expected absorption rate. The concept is built on the solubility-permeability interplay and the rate of supersaturation as the driving force of absorption. This paper presents the first case study using the ADDF concept where not only dissolution and solubility but also permeation of the drug is considered in every step of the formulation development.
View Article and Find Full Text PDFPomalidomide (POM), a potent anticancer thalidomide analogue was characterized in terms of cyclodextrin complexation to improve its aqueous solubility and maintain its anti-angiogenic activity. The most promising cyclodextrin derivatives were selected by phase-solubility studies. From the investigated nine cyclodextrins - differing in cavity size, nature of substituents, degree of substitution and charge - the highest solubility increase was observed with sulfobutylether-β-cyclodextrin (SBE-β-CD).
View Article and Find Full Text PDFIn the literature the therapeutic nonequivalence of oxytetracycline hydrochloride (OTCH) capsules and tablets was attributed to the different aqueous solubility of polymorphs without their comprehensive study. Our aim was to reveal the effects of polymorphism on equilibrium solubility, dissolution kinetics and the supersaturation of two OTCH polymorphs (stable Form A and metastable Form B).The equilibrium solubility was measured in biorelevant pH range 4-7.
View Article and Find Full Text PDFIn this work, two different approaches have been developed to predict the food effect and the bioequivalence of marketed itraconazole (ITRA) formulations. Kinetic solubility and simultaneous dissolution-permeation tests of three (ITRA) formulations (Sporanox capsules and solution and SUBA-ITRA capsules) were carried out in simulated fasted and fed states. Fraction of dose absorbed ratios estimating food effect and bioequivalence were calculated based on these results and were compared to the study results published by Medicines Agencies.
View Article and Find Full Text PDFThe objectives of this work were to develop meloxicam based amorphous solid dispersion through electrospinning technique and evaluate the effect of the polymeric matrix on the physicochemical properties of the fibers and the downstream processing ability to orodispersible dosage forms. Drug - polymer interactions formed between Eudragit E and meloxicam, confirmed through Raman and 1HNMR spectra, enabled the development of fibers from ethanol, thus allowing an increased production rate compared to PVPk30 where a DMF:THF solvent system was suitable. Microflux dissolution-permeation studies showed a significantly higher diffusion from amorphous solid dispersions compared to crystalline meloxicam.
View Article and Find Full Text PDFThe aim of this work was to develop a PAT platform consisting of four complementary instruments for the characterization of electrospun amorphous solid dispersions with meloxicam. The investigated methods, namely NIR spectroscopy, Raman spectroscopy, Colorimetry and Image analysis were tested and compared considering the ability to quantify the active pharmaceutical ingredient and to detect production errors reflected in inhomogeneous deposition of fibers. Based on individual performance the calculated RMSEP values ranged between 0.
View Article and Find Full Text PDFThis work proposes the application of artificial neural networks (ANN) to non-destructively predict the in vitro dissolution of pharmaceutical tablets from Process Analytical Technology (PAT) data. An extended release tablet formulation was studied, where the dissolution was influenced by the composition of the tablets and the tableting compression force. NIR and Raman spectra of the intact tablets were measured, and the dissolution of the tablets was modeled directly from the spectral data.
View Article and Find Full Text PDFCorona alternating current electrospinning (C-ACES), a scaled-up productivity electrospinning method was developed by combining the intense forces of the alternating electrostatic field and a sharp-edged spinneret design with increased free surface. C-ACES reached two orders of magnitude higher productivity (up to 1200 mL/h) than the classical single needle direct current electrospinning (DCES) without any alteration of fiber properties. Polyvinylpyrrolidone K90 (PVPK90), a water soluble high molecular weight nonionic polymer was processed for the first time with single needle alternating current electrospinning (ACES) and C-ACES in order to prepare fast dissolving amorphous solid dispersions of spironolactone (SPIR), a poorly water-soluble antihypertensive model drug.
View Article and Find Full Text PDFThe three dimensional printing (3DP) in the pharmaceutical domain constitutes an alternative, innovative approach compared to the conventional production methods. Fused deposition modelling (FDM), is a simple, cost-effective 3DP technique, however the range of pharmaceutical excipients that can be applied for this methodology is restricted. The study set to define the requirements of the FDM printability, using as technical support custom made, pharmaceutical polymer based filaments and to evaluate if these new dosage forms can live up to the current GMP/GCP quality standards.
View Article and Find Full Text PDFAs the process analytical technology (PAT) mindset is progressively introduced and adopted by the pharmaceutical companies, there is an increasing demand for effective and versatile real-time analyzers to address the quality assurance challenges of drug manufacturing. In the last decades, Raman spectroscopy has emerged as one of the most promising tools for non-destructive and fast characterization of the pharmaceutical processes. This review summarizes the achieved results of the real-time application of Raman spectroscopy in the field of the secondary manufacturing of pharmaceutical solid dosage forms, covering the most common secondary process steps of a tablet production line.
View Article and Find Full Text PDFLow-dose tablet formulations were produced with excellent homogeneity based on drug-loaded electrospun fibers prepared by single-needle as well as scaled-up electrospinning (SNES and HSES). Carvedilol (CAR), a BCS II class compound, served as the model drug while poly (vinylpyrrolidone--vinyl acetate) (PVPVA64) was adopted as the fiber-forming polymer. Scanning electron microscopy (SEM) imaging was used to study the morphology of HSES and SNES samples.
View Article and Find Full Text PDFThe aim of this research was to investigate the driving force of membrane transport through size-exclusion membranes and to provide a concentration-based mathematical description of it to evaluate whether it can be an alternative for lipophilic membranes in the formulation development of amorphous solid dispersions. Carvedilol, an antihypertensive drug, was chosen and formulated using solvent-based electrospinning to overcome the poor water solubility of the drug. Vinylpyrrolidone-vinyl acetate copolymer (PVPVA64) and Soluplus were used to create two different amorphous solid dispersions of the API.
View Article and Find Full Text PDFIn this study, brand and four generic formulations of telmisartan, an antihypertensive drug, were used in in vitro simultaneous dissolution-absorption, investigating the effect of different formulation additives on dissolution and on absorption through an artificial membrane. The in vitro test was found to be sensitive enough to show even small differences between brand and generic formulations caused by the use of different excipients. By only changing the type of filler from sorbitol to mannitol in the formulation, the flux through the membrane was reduced by approximately 10%.
View Article and Find Full Text PDFThe integration of Process Analytical Technology (PAT) initiative into the continuous production of pharmaceuticals is indispensable for reliable production. The present paper reports the implementation of in-line Raman spectroscopy in a continuous blending and tableting process of a three-component model pharmaceutical system, containing caffeine as model active pharmaceutical ingredient (API), glucose as model excipient and magnesium stearate as lubricant. The real-time analysis of API content, blend homogeneity, and tablet content uniformity was performed using a Partial Least Squares (PLS) quantitative method.
View Article and Find Full Text PDFThe bioavailability of the anthelminthic flubendazole was remarkably enhanced in comparison with the pure crystalline drug by developing completely amorphous electrospun nanofibres with a matrix consisting of hydroxypropyl-β-cyclodextrin and polyvinylpyrrolidone. The thus produced formulations can potentially be active against macrofilariae parasites causing tropical diseases, for example, river blindness and elephantiasis, which affect altogether more than a hundred million people worldwide. The bioavailability enhancement was based on the considerably improved dissolution.
View Article and Find Full Text PDFThe aim of this study was to investigate the impact of formulation excipients and solubilizing additives on dissolution, supersaturation, and membrane transport of an active pharmaceutical ingredient (API). When a poorly water-soluble API is formulated to enhance its dissolution, additives, such as surfactants, polymers, and cyclodextrins, have an effect not only on dissolution profile but also on the measured physicochemical properties (solubility, pK, permeability) of the drug while the excipient is present, therefore also affecting the driving force of membrane transport. Meloxicam, a nonsteroidal anti-inflammatory drug, was chosen as a poorly water-soluble model drug and formulated in order to enhance its dissolution using solvent-based electrospinning.
View Article and Find Full Text PDFAlternating current electrospinning (ACES) capable to reach multiple times higher specific productivities than widely used direct current electrospinning (DCES) was investigated and compared with DCES to prepare drug-loaded formulations based on one of the most widespread polymeric matrix used for commercialized pharmaceutical solid dispersions, hydroxypropylmethylcellulose 2910 (HPMC). In order to improve the insufficient spinnability of HPMC (both with ACES and DCES) polyethylene oxide (PEO) as secondary polymer with intense ACES activity was introduced into the electrospinning solution. Different grades of this polymer used at as low concentrations in the fibers as 0.
View Article and Find Full Text PDF