Publications by authors named "Enid T Gonzalez-Orta"

Bacterial pathogens in the Ralstonia solanacearum species complex (RSSC) infect the water-transporting xylem vessels of plants, causing bacterial wilt disease. Strains in RSSC phylotypes I and III can reduce nitrate to dinitrogen via complete denitrification. The four-step denitrification pathway enables bacteria to use inorganic nitrogen species as terminal electron acceptors, supporting their growth in oxygen-limited environments such as biofilms or plant xylem.

View Article and Find Full Text PDF

The pivot to remote and hybrid learning during the Covid-19 pandemic presented a challenge for many in academia. Most institutions were not prepared to support this rapid change, and instructors were left with the burden of converting a traditional face-to-face course into multiple modalities with very limited preparation time. When institutional support is lacking, we posit that instructor communities of practice can help provide the resources needed to meet the instructional demands.

View Article and Find Full Text PDF

Anaerobic soil disinfestation (ASD) is an organic amendment-based management tool for controlling soil-borne plant diseases and is increasingly used in a variety of crops. ASD results in a marked decrease in soil redox potential and other physicochemical changes, and a turnover in the composition of the soil microbiome. Mechanisms of ASD-mediated pathogen control are not fully understood, but appear to depend on the carbon source used to initiate the process and involve a combination of biological (i.

View Article and Find Full Text PDF

Unlabelled: Genomic data predict that, in addition to oxygen, the bacterial plant pathogen Ralstonia solanacearum can use nitrate (NO3(-)), nitrite (NO2(-)), nitric oxide (NO), and nitrous oxide (N2O) as terminal electron acceptors (TEAs). Genes encoding inorganic nitrogen reduction were highly expressed during tomato bacterial wilt disease, when the pathogen grows in xylem vessels. Direct measurements found that tomato xylem fluid was low in oxygen, especially in plants infected by R.

View Article and Find Full Text PDF