Publications by authors named "Enhong Li"

Objectives: Although the discussion about oral mucositis in Head and Neck Cancer (HNC) patients has become a prominent issue, its incidence and influencing factors have not been thoroughly synthesized. This meta-analysis aims to integrate the prevalence and associated factors of radiation-induced oral mucositis among HNC patients.

Methods: This study searched the following electronic databases: PubMed, the Cochrane Database, the Web of Science, EMBASE, CNKI, the Wanfang Database, and the VIP Database.

View Article and Find Full Text PDF

Mutations in the FOXF1 gene, a key transcriptional regulator of pulmonary vascular development, cause Alveolar Capillary Dysplasia with Misalignment of Pulmonary Veins, a lethal lung disease affecting newborns and infants. Identification of new FOXF1 upstream regulatory elements is critical to explain why frequent non-coding FOXF1 deletions are linked to the disease. Herein, we use multiome single-nuclei RNA and ATAC sequencing of mouse and human patient lungs to identify four conserved endothelial and mesenchymal FOXF1 enhancers.

View Article and Find Full Text PDF

Bronchopulmonary dysplasia (BPD) is a severe complication of preterm births, which develops due to exposure to supplemental oxygen and mechanical ventilation. Published studies demonstrated that the number of endothelial progenitor cells (EPC) is decreased in mouse and human BPD lungs and that adoptive transfer of EPC is an effective approach in reversing the hyperoxia-induced lung damage in mouse model of BPD. Recent advancements in macrophage biology identified the specific subtypes of circulating and resident macrophages mediating the developmental and regenerative functions in the lungs.

View Article and Find Full Text PDF

Radiation-induced lung injury (RILI) is a common complication of anti-cancer treatments for thoracic and hematologic malignancies. Bone marrow (BM) transplantation restores hematopoietic cell lineages in cancer patients. However, it is ineffective in improving lung repair after RILI due to the paucity of respiratory progenitors in BM transplants.

View Article and Find Full Text PDF

Recent efforts in bioengineering and embryonic stem cell (ESC) technology allowed the generation of ESC-derived mouse lung tissues in transgenic mice that were missing critical morphogenetic genes. Epithelial cell lineages were efficiently generated from ESC, but other cell types were mosaic. A complete contribution of donor ESCs to lung tissue has never been achieved.

View Article and Find Full Text PDF

Endothelial cell dysfunction occurs in a variety of acute and chronic pulmonary diseases including pulmonary hypertension, viral and bacterial pneumonia, bronchopulmonary dysplasia, and congenital lung diseases such as alveolar capillary dysplasia with misalignment of pulmonary veins (ACDMPV). To correct endothelial dysfunction, there is a critical need for the development of nanoparticle systems that can deliver drugs and nucleic acids to endothelial cells with high efficiency and precision. While several nanoparticle delivery systems targeting endothelial cells have been recently developed, none of them are specific to lung endothelial cells without targeting other organs in the body.

View Article and Find Full Text PDF

Introduction: Alveolar Capillary Dysplasia with Misaligned Pulmonary Veins (ACDMPV) is a fatal congenital disease resulting from a pulmonary vascular endothelial deficiency of FOXF1, producing abnormal morphogenesis of alveolar capillaries, malpositioned pulmonary veins and disordered development of lung lobes. Affected neonates suffer from cyanosis, severe breathing insufficiency, pulmonary hypertension, and death typically within days to weeks after birth. Currently, no treatment exists for ACDMPV, although recent murine research in the Kalinichenko lab demonstrates nanoparticle delivery improves survival and reconstitutes normal alveolar-capillary architecture.

View Article and Find Full Text PDF
Article Synopsis
  • The study explores how bone marrow can be generated from embryonic stem cells (ESCs) to enhance cell therapies for severe diseases, addressing existing technical limitations.
  • Using blastocyst complementation, researchers successfully produced various hematopoietic and stromal cell types from mouse ESCs in rat embryos, matching normal mouse bone marrow cell characteristics.
  • The findings highlighted efficient development of mouse hematopoietic stem cells (HSCs) in mouse-rat chimeras, demonstrating their potential for long-term reconstitution and successful transplantation in lethally irradiated mice.
View Article and Find Full Text PDF

Schlecht. is a wild diploid strawberry species. The intense peach-like aroma of its fruits makes an excellent resource for strawberry breeding programs aimed at enhancing flavors.

View Article and Find Full Text PDF

Background: Silicosis is a chronic occupational pulmonary disease characterized by persistent inflammation and irreversible fibrosis. Considerable evidences now indicate that S100 calcium-binding protein A4 (S100A4) has been associated with fibrotic diseases. However, the role of S100A4 in silicosis is still unclear.

View Article and Find Full Text PDF

Oocyte quality is one of the key factors affecting the outcome of ART. Therefore, how to improve oocyte quality has become an urgent problem in the field of ART. In this study we evaluated the effect of resveratrol (RSV), added during the process of superovulation, on embryonic development in mice.

View Article and Find Full Text PDF

Although pulmonary endothelial progenitor cells (EPCs) hold promise for cell-based therapies for neonatal pulmonary disorders, whether EPCs can be derived from pluripotent embryonic stem cells (ESCs) or induced pluripotent stem cells remains unknown. To investigate the heterogeneity of pulmonary EPCs and derive functional EPCs from pluripotent ESCs. Single-cell RNA sequencing of neonatal human and mouse lung was used to identify the heterogeneity of pulmonary EPCs.

View Article and Find Full Text PDF

Background: Distinct boundaries between the proximal conducting airways and more peripheral-bronchial regions of the lung are established early in foregut embryogenesis, demarcated in part by the distribution of SOX family and NKX2-1 transcription factors along the cephalo-caudal axis of the lung. We used blastocyst complementation to identify the role of NKX2-1 in the formation of the proximal-peripheral boundary of the airways in mouse chimeric embryos.

Results: While Nkx2-1 mouse embryos form primordial tracheal cysts, peripheral pulmonary structures are entirely lacking in Nkx2-1 mice.

View Article and Find Full Text PDF

The regeneration and replacement of lung cells or tissues from induced pluripotent stem cell- or embryonic stem cell-derived cells represent future therapies for life-threatening pulmonary disorders but are limited by technical challenges to produce highly differentiated cells able to maintain lung function. Functional lung tissue-containing airways, alveoli, vasculature, and stroma have never been produced via directed differentiation of embryonic stem cells (ESCs) or induced pluripotent stem cells. We sought to produce all tissue components of the lung from bronchi to alveoli by embryo complementation.

View Article and Find Full Text PDF

Silicosis is a devastating disease caused by inhalation of silica dust that leads to inflammatory cascade and then scarring of the lung tissue. Increasing evidences indicate that soluble receptor for advanced glycation end products (sRAGE) is involved in inflammatory diseases. However, no data on the possible relationship between sRAGE and inflammation of silicosis are available.

View Article and Find Full Text PDF

After zygotic genome activation and lineage specification, zygotes develop into late blastocysts comprising three distinct cell types. The molecular mechanisms underlying this progress are largely unknown in pigs. Here, we intended to analyze an extensive set of regulators at the single-cell level to define the events involved in the development of the porcine blastocysts.

View Article and Find Full Text PDF

Our study examined the in vivo chimeric and survival capacities of chimeras created by injecting tetraploid embryonic stem cells (ESCs) expressing green fluorescent protein (GFP) into diploid embryos. At 3.5 days post-coitum (dpc) and 4.

View Article and Find Full Text PDF