Background: KRAS inhibitors are revolutionizing the treatment of NSCLC, but clinico-genomic determinants of treatment efficacy warrant continued exploration.
Methods: Patients with advanced KRASG12C-mutant NSCLC treated with adagrasib (KRYSTAL-1-NCT03785249) were included in the analysis. Pre-treatment NGS data were collected per protocol.
Med Anthropol
August 2024
I explore the experience of managing type 1 diabetes with wearable technology. Type 1 diabetes is a chronic illness which requires continuous maintenance to keep the blood glucose levels within range. Using autoethnography, I investigate both the practices of translating information from technology and from senses, and also from health authorities, into practices.
View Article and Find Full Text PDFKRAS is the most frequently mutated oncogene in human cancer and facilitates uncontrolled growth through hyperactivation of the receptor tyrosine kinase (RTK)/mitogen-activated protein kinase (MAPK) pathway. The Son of Sevenless homolog 1 (SOS1) protein functions as a guanine nucleotide exchange factor (GEF) for the RAS subfamily of small GTPases and represents a druggable target in the pathway. Using a structure-based drug discovery approach, MRTX0902 was identified as a selective and potent SOS1 inhibitor that disrupts the KRAS:SOS1 protein-protein interaction to prevent SOS1-mediated nucleotide exchange on KRAS and translates into an anti-proliferative effect in cancer cell lines with genetic alterations of the KRAS-MAPK pathway.
View Article and Find Full Text PDFThe H1047R mutation of is highly prevalent in breast cancers and other solid tumors. Selectively targeting PI3Kα over PI3Kα is crucial due to the role that PI3Kα plays in normal cellular processes, including glucose homeostasis. Currently, only one PI3Kα-selective inhibitor has progressed into clinical trials, while three pan mutant (H1047R, H1047L, H1047Y, E542K, and E545K) selective PI3Kα inhibitors have also reached the clinical stage.
View Article and Find Full Text PDFRecent progress in targeting KRAS has provided both insight and inspiration for targeting alternative KRAS mutants. In this study, we evaluated the mechanism of action and anti-tumor efficacy of MRTX1133, a potent, selective and non-covalent KRAS inhibitor. MRTX1133 demonstrated a high-affinity interaction with GDP-loaded KRAS with K and IC values of ~0.
View Article and Find Full Text PDFMRTX1719 is an inhibitor of the PRMT5/MTA complex and recently entered clinical trials for the treatment of MTAP-deleted cancers. MRTX1719 is a class 3 atropisomeric compound that requires a chiral synthesis or a chiral separation step in its preparation. Here, we report the SAR and medicinal chemistry design strategy, supported by structural insights from X-ray crystallography, to discover a class 1 atropisomeric compound from the same series that does not require a chiral synthesis or a chiral separation step in its preparation.
View Article and Find Full Text PDFThe PRMT5•MTA complex has recently emerged as a new synthetically lethal drug target for the treatment of -deleted cancers. Here, we report the discovery of development candidate . is a potent and selective binder to the PRMT5•MTA complex and selectively inhibits PRMT5 activity in -deleted cells compared to -wild-type cells.
View Article and Find Full Text PDFKRAS inhibitors, including MRTX849, are promising treatment options for KRAS-mutant non-small cell lung cancer (NSCLC). PD-1 inhibitors are approved in NSCLC; however, strategies to enhance checkpoint inhibitor therapy (CIT) are needed. mutations are smoking-associated transversion mutations associated with high tumor mutation burden, PD-L1 positivity, and an immunosuppressive tumor microenvironment.
View Article and Find Full Text PDFDespite decades of research, efforts to directly target KRAS have been challenging. MRTX849 was identified as a potent, selective, and covalent KRAS inhibitor that exhibits favorable drug-like properties, selectively modifies mutant cysteine 12 in GDP-bound KRAS, and inhibits KRAS-dependent signaling. MRTX849 demonstrated pronounced tumor regression in 17 of 26 (65%) KRAS-positive cell line- and patient-derived xenograft models from multiple tumor types, and objective responses have been observed in patients with KRAS-positive lung and colon adenocarcinomas.
View Article and Find Full Text PDFMany real-life situations require flexible behavior in changing environments. Evidence suggests that anticipation of conflict or task difficulty results in behavioral and neural allocation of task-relevant resources. Here we used a high- and low-interference version of an item-recognition task to examine the neurobehavioral underpinnings of context-sensitive adjustment in working memory (WM).
View Article and Find Full Text PDFWe describe DNase-capture, an assay that increases the analytical resolution of DNase-seq by focusing its sequencing phase on selected genomic regions. We introduce a new method to compensate for capture bias called BaseNormal that allows for accurate recovery of transcription factor protection profiles from DNase-capture data. We show that these normalized data allow for nuanced detection of transcription factor binding heterogeneity with as few as dozens of sites.
View Article and Find Full Text PDFCheckpoint inhibitor therapy has led to major treatment advances for several cancers including non-small cell lung cancer (NSCLC). Despite this, a significant percentage of patients do not respond or develop resistance. Potential mechanisms of resistance include lack of expression of programmed death ligand 1 (PD-L1), decreased capacity to present tumor antigens, and the presence of an immunosuppressive tumor microenvironment.
View Article and Find Full Text PDFexon 14 deletion (ex14 del) mutations represent a novel class of non-small cell lung cancer (NSCLC) driver mutations. We evaluated glesatinib, a spectrum-selective MET inhibitor exhibiting a type II binding mode, in ex14 del-positive nonclinical models and NSCLC patients and assessed its ability to overcome resistance to type I MET inhibitors. As most MET inhibitors in clinical development bind the active site with a type I binding mode, we investigated mechanisms of acquired resistance to each MET inhibitor class utilizing and models and in glesatinib clinical trials.
View Article and Find Full Text PDFWhile the immune system is essential for the maintenance of the homeostasis, health and survival of humans, aberrant immune responses can lead to chronic inflammatory and autoimmune disorders. Pharmacological modulation of drug targets in the immune system to ameliorate disease also carry a risk of immunosuppression that could lead to adverse outcomes. Therefore, it is important to understand the 'immune fingerprint' of novel therapeutics as they relate to current and, clinically used immunological therapies to better understand their potential therapeutic benefit as well as immunosuppressive ability that might lead to adverse events such as infection risks and cancer.
View Article and Find Full Text PDFRecent studies have elucidated the molecular mechanism of RORγT transcriptional regulation of Th17 differentiation and function. RORγT was initially identified as a transcription factor required for thymopoiesis by maintaining survival of CD4CD8 (DP) thymocytes. While RORγ antagonists are currently being developed to treat autoimmunity, it remains unclear how RORγT inhibition may impact thymocyte development.
View Article and Find Full Text PDFHuman deoxyhypusine hydroxylase (hDOHH) is an enzyme that is involved in the critical post-translational modification of the eukaryotic translation initiation factor 5A (eIF5A). Following the conversion of a lysine residue on eIF5A to deoxyhypusine (Dhp) by deoxyhypusine synthase, hDOHH hydroxylates Dhp to yield the unusual amino acid residue hypusine (Hpu), a modification that is essential for eIF5A to promote peptide synthesis at the ribosome, among other functions. Purification of hDOHH overexpressed in E.
View Article and Find Full Text PDFWe report the preclinical evaluation of PF-06463922, a potent and brain-penetrant ALK/ROS1 inhibitor. Compared with other clinically available ALK inhibitors, PF-06463922 displayed superior potency against all known clinically acquired ALK mutations, including the highly resistant G1202R mutant. Furthermore, PF-06463922 treatment led to regression of EML4-ALK-driven brain metastases, leading to prolonged mouse survival, in a superior manner.
View Article and Find Full Text PDFOncogenic c-ros oncogene1 (ROS1) fusion kinases have been identified in a variety of human cancers and are attractive targets for cancer therapy. The MET/ALK/ROS1 inhibitor crizotinib (Xalkori, PF-02341066) has demonstrated promising clinical activity in ROS1 fusion-positive non-small cell lung cancer. However, emerging clinical evidence has shown that patients can develop resistance by acquiring secondary point mutations in ROS1 kinase.
View Article and Find Full Text PDFMammalian MutY glycosylases have a unique architecture that features an interdomain connector (IDC) that joins the catalytic N-terminal domain and 8-oxoguanine (OG) recognition C-terminal domain. The IDC has been shown to be a hub for interactions with protein partners involved in coordinating downstream repair events and signaling apoptosis. Herein, a previously unidentified zinc ion and its coordination by three Cys residues of the IDC region of eukaryotic MutY organisms were characterized by mutagenesis, ICP-MS, and EXAFS.
View Article and Find Full Text PDFAlthough crizotinib demonstrates robust efficacy in anaplastic lymphoma kinase (ALK)-positive non-small-cell lung carcinoma patients, progression during treatment eventually develops. Resistant patient samples revealed a variety of point mutations in the kinase domain of ALK, including the L1196M gatekeeper mutation. In addition, some patients progress due to cancer metastasis in the brain.
View Article and Find Full Text PDFCrizotinib (1), an anaplastic lymphoma kinase (ALK) receptor tyrosine kinase inhibitor approved by the U.S. Food and Drug Administration in 2011, is efficacious in ALK and ROS positive patients.
View Article and Find Full Text PDFPhysical activity promotes health and prevents disease. When patients with atopic dermatitis (AD) undertake exercise, the itch often gets worse due to sweating, and this may reduce their engagement in physical exercise. The aim of this study was to determine the level of physical exercise in patients with AD compared with a control group from a normal population.
View Article and Find Full Text PDFImmune-induced prostaglandin E2 (PGE2) synthesis is critical for fever and other centrally elicited disease symptoms. The production of PGE2 depends on cyclooxygenase-2 and microsomal prostaglandin E synthase-1 (mPGES-1), but the identity of the cells involved has been a matter of controversy. We generated mice expressing mPGES-1 either in cells of hematopoietic or nonhematopoietic origin.
View Article and Find Full Text PDF