Publications by authors named "England W"

Huntington's disease (HD) is caused by a CAG repeat expansion in the HTT gene, leading to altered gene expression. However, the mechanisms leading to disrupted RNA processing in HD remain unclear. Here we identify TDP-43 and the N6-methyladenosine (m6A) writer protein METTL3 to be upstream regulators of exon skipping in multiple HD systems.

View Article and Find Full Text PDF

Learning collaboratives are seldom used outside of health care quality improvement. We describe a condensed, 10-week learning collaborative ("Telemedicine Hack") that facilitated telemedicine implementation for outpatient clinicians early in the COVID-19 pandemic. Live attendance averaged 1688 participants per session.

View Article and Find Full Text PDF

JTE-607 is an anticancer and anti-inflammatory compound and its active form, compound 2, directly binds to and inhibits CPSF73, the endonuclease for the cleavage step in pre-messenger RNA (pre-mRNA) 3' processing. Surprisingly, compound 2-mediated inhibition of pre-mRNA cleavage is sequence specific and the drug sensitivity is predominantly determined by sequences flanking the cleavage site (CS). Using massively parallel in vitro assays, we identified key sequence features that determine drug sensitivity.

View Article and Find Full Text PDF
Article Synopsis
  • Huntington's disease (HD) is linked to a CAG repeat expansion in the huntingtin gene, leading to disrupted RNA processing, though the exact mechanisms were previously unclear.
  • Analysis of the huntingtin protein interactions revealed that RNA-binding proteins (RBPs), particularly TDP-43 and the m6A writer METTL3, play key roles in increased exon skipping observed in HD.
  • Decreased nuclear localization of TDP-43 and reduced m6A RNA modification on specific RNAs in the HD model suggest a novel mechanism of altered gene expression contributing to HD pathology.
View Article and Find Full Text PDF

Oil spilled in marine environments can settle to the seafloor through aggregation and sedimentation processes. This has been predicted to be especially relevant in the Arctic due to plankton blooms initiated by melting sea ice. These conditions exist in the Kivalliq region in Nunavut, Canada, where elevated shipping traffic has increased the risk of accidental spills.

View Article and Find Full Text PDF

There are challenges in monitoring and managing water quality due to spatial and temporal heterogeneity in contaminant sources, transport, and transformations. We demonstrate the importance of longitudinal stream synoptic (LSS) monitoring, which can track combinations of water quality parameters along flowpaths across space and time. Specifically, we analyze longitudinal patterns of chemical mixtures of carbon, nutrients, greenhouse gasses, salts, and metals concentrations along 10 flowpaths draining 1,765 km of the Chesapeake Bay region.

View Article and Find Full Text PDF

Hematopoietic stem cell transplantation (HSCT) can replace endogenous microglia with circulation-derived macrophages but has high mortality. To mitigate the risks of HSCT and expand the potential for microglia replacement, we engineered an inhibitor-resistant CSF1R that enables robust microglia replacement. A glycine to alanine substitution at position 795 of human CSF1R (G795A) confers resistance to multiple CSF1R inhibitors, including PLX3397 and PLX5622.

View Article and Find Full Text PDF

Wastewater monitoring of SARS-CoV-2 enables early detection and monitoring of the COVID-19 disease burden in communities and can track specific variants of concern. We determined proportions of the Omicron and Delta variants across 30 municipalities covering >75% of the province of Alberta (population 4.5 million), Canada, during November 2021-January 2022.

View Article and Find Full Text PDF

RNA structure and function are intimately tied to RNA binding protein recognition and regulation. Posttranslational modifications are chemical modifications which can control protein biology. The role of PTMs in the regulation RBPs is not well understood, in part due to a lacking analysis of PTM deposition on RBPs.

View Article and Find Full Text PDF

Tissues and organs are composed of many diverse cell types, making cell-specific gene expression profiling a major challenge. Herein we report that endogenous enzymes, unique to a cell of interest, can be utilized to enable cell-specific metabolic labeling of RNA. We demonstrate that appropriately designed "caged" nucleosides can be rendered active by serving as a substrate for cancer-cell specific enzymes to enable RNA metabolic labeling, only in cancer cells.

View Article and Find Full Text PDF

Short-term probabilistic forecasts of the trajectory of the COVID-19 pandemic in the United States have served as a visible and important communication channel between the scientific modeling community and both the general public and decision-makers. Forecasting models provide specific, quantitative, and evaluable predictions that inform short-term decisions such as healthcare staffing needs, school closures, and allocation of medical supplies. Starting in April 2020, the US COVID-19 Forecast Hub (https://covid19forecasthub.

View Article and Find Full Text PDF

The P522R variant of PLCG2, expressed by microglia, is associated with reduced risk of Alzheimer's disease (AD). Yet, the impact of this protective mutation on microglial responses to AD pathology remains unknown. Chimeric AD and wild-type mice were generated by transplanting PLCG2-P522R or isogenic wild-type human induced pluripotent stem cell microglia.

View Article and Find Full Text PDF

RNA molecules can fold into complex structures and interact with trans-acting factors to control their biology. Recent methods have been focused on developing novel tools to measure RNA structure transcriptome-wide, but their utility to study and predict RNA-protein interactions or RNA processing has been limited thus far. Here, we extend these studies with the first transcriptome-wide mapping method for cataloging RNA solvent accessibility, icLASER.

View Article and Find Full Text PDF

Background: Disease-associated microglia (DAMs), that surround beta-amyloid plaques, represent a transcriptionally-distinct microglial profile in Alzheimer's disease (AD). Activation of DAMs is dependent on triggering receptor expressed on myeloid cells 2 (TREM2) in mouse models and the AD TREM2-R47H risk variant reduces microglial activation and plaque association in human carriers. Interestingly, TREM2 has also been identified as a microglial lipid-sensor, and recent data indicates lipid droplet accumulation in aged microglia, that is in turn associated with a dysfunctional proinflammatory phenotype.

View Article and Find Full Text PDF

The SARS-CoV-2 virus is responsible for the novel coronavirus disease 2019 (COVID-19), which has spread to populations throughout the continental United States. Most state and local governments have adopted some level of "social distancing" policy, but infections have continued to spread despite these efforts. Absent a vaccine, authorities have few other tools by which to mitigate further spread of the virus.

View Article and Find Full Text PDF

Chronic cellular stress associated with neurodegenerative disease can result in the persistence of stress granule (SG) structures, membraneless organelles that form in response to cellular stress. In Huntington's disease (HD), chronic expression of mutant huntingtin generates various forms of cellular stress, including activation of the unfolded protein response and oxidative stress. However, it has yet to be determined whether SGs are a feature of HD neuropathology.

View Article and Find Full Text PDF

Therapeutic targeting of allele-specific single nucleotide mutations in RNA is a major challenge in biology and medicine. Herein, we describe the utility of the XNAzyme X10-23 to knock down allele-specific mRNA sequences in cells. We demonstrate the value of this approach by targeting the "undruggable" mutation G12V in oncogenic KRAS.

View Article and Find Full Text PDF

Obtaining neuron transcriptomes is challenging; their complex morphology and interconnected microenvironments make it difficult to isolate neurons without potentially altering gene expression. Multidendritic sensory neurons (md neurons) of Drosophila larvae are commonly used to study peripheral nervous system biology, particularly dendrite arborization. We sought to test if EC-tagging, a biosynthetic RNA tagging and purification method that avoids the caveats of physical isolation, would enable discovery of novel regulators of md neuron dendrite arborization.

View Article and Find Full Text PDF

RNA molecules can fold into complex two- and three-dimensional shapes that are critical for their function. Chemical probes have long been utilized to interrogate RNA structure and are now considered invaluable resources in the goal of relating structure to function. Recently, the power of deep sequencing and careful chemical probe design have merged, permitting researchers to obtain a holistic understanding of how RNA structure can be utilized to control RNA biology transcriptome-wide.

View Article and Find Full Text PDF

Background: Assessing the postoperative recovery of pediatric patients is challenging as there is no validated comprehensive patient-centered recovery assessment tool for this population. A qualitative investigative approach with in-depth stakeholder interviews can provide insight into the recovery process and inform the development of a comprehensive patient-centered postoperative assessment tool for children.

Methods: We conducted open-ended, semistructured interviews with children 6-12 years old undergoing elective surgery (n = 35), their parents (n = 37), and clinicians (n = 23) who commonly care for this population (nurses, anesthesiologists, and surgeons).

View Article and Find Full Text PDF
Article Synopsis
  • The study focuses on how specific protein factors recognize splice sites in mRNA, particularly highly degenerate ones, by binding to single-stranded exonic splicing motifs while lacking detailed understanding of their secondary structures.
  • Analysis of mouse transcriptomes reveals that retained introns are flanked by a base-paired segment upstream and a single-stranded exonic segment downstream, with upstream loops containing splicing enhancers that are crucial for proper splicing.
  • Substituting or hybridizing these upstream loops hinders splicing, indicating that the structure of exonic segments can regulate alternative splicing by affecting the accessibility of necessary splicing factors.
View Article and Find Full Text PDF

Tissues and organs are composed of diverse cell types, which poses a major challenge for cell-type-specific profiling of gene expression. Current metabolic labeling methods rely on exogenous pyrimidine analogs that are only incorporated into RNA in cells expressing an exogenous enzyme. This approach assumes that off-target cells cannot incorporate these analogs.

View Article and Find Full Text PDF

iPSC-derived microglia offer a powerful tool to study microglial homeostasis and disease-associated inflammatory responses. Yet, microglia are highly sensitive to their environment, exhibiting transcriptomic deficiencies when kept in isolation from the brain. Furthermore, species-specific genetic variations demonstrate that rodent microglia fail to fully recapitulate the human condition.

View Article and Find Full Text PDF

Optimized and stringent chemical methods to profile nascent RNA expression are still in demand. Herein, we expand the toolkit for metabolic labeling of RNA through application of inverse electron demand Diels-Alder (IEDDA) chemistry. Structural examination of metabolic enzymes guided the design and synthesis of vinyl-modified nucleosides, which we systematically tested for their ability to be installed through cellular machinery.

View Article and Find Full Text PDF

Background: Child life therapists provide patient education for children undergoing radiation therapy to assist in coping with and understanding their treatment.

Objective: This proof-of-concept study aimed to determine the feasibility of incorporating a 360-degree video tour via a virtual reality system for children scheduled to receive radiation therapy. The secondary objective was to qualitatively describe each subject's virtual reality experience.

View Article and Find Full Text PDF