Publications by authors named "Engemann D"

Background: Electroencephalography (EEG) has a long history as a clinical tool to study brain function, and its potential to derive biomarkers for various applications is far from exhausted. Machine learning (ML) can guide future innovation by harnessing the wealth of complex EEG signals to isolate relevant brain activity. Yet, ML studies in EEG tend to ignore physiological artefacts, which may cause problems for deriving biomarkers specific to the central nervous system (CNS).

View Article and Find Full Text PDF

Accurately predicting functional outcomes for unresponsive patients with acute brain injury is a medical, scientific and ethical challenge. This prospective study assesses how a multimodal approach combining various numbers of behavioral, neuroimaging and electrophysiological markers affects the performance of outcome predictions. We analyzed data from 349 patients admitted to a tertiary neurointensive care unit between 2009 and 2021, categorizing prognoses as good, uncertain or poor, and compared these predictions with observed outcomes using the Glasgow Outcome Scale-Extended (GOS-E, levels ranging from 1 to 8, with higher levels indicating better outcomes).

View Article and Find Full Text PDF

Evoked responses and oscillations represent two major electrophysiological phenomena in the human brain yet the link between them remains rather obscure. Here we show how most frequently studied EEG signals: the P300-evoked response and alpha oscillations (8-12 Hz) can be linked with the baseline-shift mechanism. This mechanism states that oscillations generate evoked responses if oscillations have a non-zero mean and their amplitude is modulated by the stimulus.

View Article and Find Full Text PDF

Background: Electroencephalography (EEG) is increasingly used for monitoring the depth of general anaesthesia, but EEG data from general anaesthesia monitoring are rarely reused for research. Here, we explored repurposing EEG monitoring from general anaesthesia for brain-age modelling using machine learning. We hypothesised that brain age estimated from EEG during general anaesthesia is associated with perioperative risk.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how the dynamics of neural networks, specifically the cerebellum and its connection to other brain areas, are altered during social interactions in individuals with Autism Spectrum Disorders (ASD).
  • - Using advanced techniques, researchers measured brain activity in participants with ASD and those with typical development during realistic social interactions, finding an increase in theta oscillation power in the cerebellum and various cortices for those with ASD.
  • - While there were noticeable changes in brain activity related to social engagement, no significant differences were found between the ASD and typical development groups, suggesting a need for further research to understand the complexities of ASD neural dynamics.
View Article and Find Full Text PDF
Article Synopsis
  • Brain aging is complex and challenging to model accurately for clinical use, prompting researchers to use machine learning with neuroimaging data to predict age.
  • Recent studies have moved from using single imaging types (unimodal) to multiple types (multimodal), which enhances the accuracy and sensitivity to chronic brain disorders.
  • While multimodal imaging shows promise in refining brain age models, there remains significant room for improvement in making these models practically useful in clinical settings.
View Article and Find Full Text PDF

Population-level modeling can define quantitative measures of individual aging by applying machine learning to large volumes of brain images. These measures of brain age, obtained from the general population, helped characterize disease severity in neurological populations, improving estimates of diagnosis or prognosis. Magnetoencephalography (MEG) and Electroencephalography (EEG) have the potential to further generalize this approach towards prevention and public health by enabling assessments of brain health at large scales in socioeconomically diverse environments.

View Article and Find Full Text PDF

Previous literature has focused on predicting a diagnostic label from structural brain imaging. Since subtle changes in the brain precede a cognitive decline in healthy and pathological aging, our study predicts future decline as a continuous trajectory instead. Here, we tested whether baseline multimodal neuroimaging data improve the prediction of future cognitive decline in healthy and pathological aging.

View Article and Find Full Text PDF
Article Synopsis
  • A study investigated the use of brain age, calculated through neuroimaging, as a communication tool for assessing brain health in multiple sclerosis (MS) patients.
  • The researchers used a linear regression model to predict brain age and tested its relationship with cognitive performance, specifically through the Symbol Digit Modalities Test (SDMT).
  • Results showed a significant correlation between brain age and cognitive scores in MS patients, suggesting that brain age could serve as a useful biomarker for cognitive dysfunction in MS.
View Article and Find Full Text PDF

Building machine learning models using EEG recorded outside of the laboratory setting requires methods robust to noisy data and randomly missing channels. This need is particularly great when working with sparse EEG montages (1-6 channels), often encountered in consumer-grade or mobile EEG devices. Neither classical machine learning models nor deep neural networks trained end-to-end on EEG are typically designed or tested for robustness to corruption, and especially to randomly missing channels.

View Article and Find Full Text PDF

Although cognitive decline (CD) is associated with increased post-operative morbidity and mortality, routinely screening patients remains difficult. The main objective of this prospective study is to use the EEG response to a Propofol-based general anesthesia (GA) to reveal CD. 42 patients with collected EEG and Propofol target concentration infusion (TCI) during GA had a preoperative cognitive assessment using MoCA.

View Article and Find Full Text PDF

The human dynamic clamp (HDC) is a human-machine interface designed on the basis of coordination dynamics for studying realistic social interaction under controlled and reproducible conditions. Here, we propose to probe the validity of the HDC as a psychometric instrument for quantifying social abilities in children with autism spectrum disorder (ASD) and neurotypical development. To study interpersonal synchrony with the HDC, we derived five standardized scores following a gradient from sensorimotor and motor to higher sociocognitive skills in a sample of 155 individuals (113 participants with ASD, 42 typically developing participants; aged 5 to 25 years; IQ > 70).

View Article and Find Full Text PDF

In the 20 century, many advances in biological knowledge and evidence-based medicine were supported by p values and accompanying methods. In the early 21 century, ambitions toward precision medicine place a premium on detailed predictions for single individuals. The shift causes tension between traditional regression methods used to infer statistically significant group differences and burgeoning predictive analysis tools suited to forecast an individual's future.

View Article and Find Full Text PDF

Supervised learning paradigms are often limited by the amount of labeled data that is available. This phenomenon is particularly problematic in clinically-relevant data, such as electroencephalography (EEG), where labeling can be costly in terms of specialized expertise and human processing time. Consequently, deep learning architectures designed to learn on EEG data have yielded relatively shallow models and performances at best similar to those of traditional feature-based approaches.

View Article and Find Full Text PDF

Predicting biomedical outcomes from Magnetoencephalography and Electroencephalography (M/EEG) is central to applications like decoding, brain-computer-interfaces (BCI) or biomarker development and is facilitated by supervised machine learning. Yet, most of the literature is concerned with classification of outcomes defined at the event-level. Here, we focus on predicting continuous outcomes from M/EEG signal defined at the subject-level, and analyze about 600 MEG recordings from Cam-CAN dataset and about 1000 EEG recordings from TUH dataset.

View Article and Find Full Text PDF

Electrophysiological methods, that is M/EEG, provide unique views into brain health. Yet, when building predictive models from brain data, it is often unclear how electrophysiology should be combined with other neuroimaging methods. Information can be redundant, useful common representations of multimodal data may not be obvious and multimodal data collection can be medically contraindicated, which reduces applicability.

View Article and Find Full Text PDF

Severe brain injuries can lead to long-lasting disorders of consciousness (DoC) such as vegetative state/unresponsive wakefulness syndrome (VS/UWS) or minimally conscious state (MCS). While behavioral assessment remains the gold standard to determine conscious state, EEG has proven to be a promising complementary tool to monitor the effect of new therapeutics. Encouraging results have been obtained with invasive electrical stimulation of the brain, and recent studies identified transcranial direct current stimulation (tDCS) as an effective approach in randomized controlled trials.

View Article and Find Full Text PDF

Observing others' gaze is most informative during social encounters between humans: We can learn about potentially salient objects in the shared environment, infer others' mental states and detect their communicative intentions. We almost automatically follow the gaze of others in order to check the relevance of the target of the other's attention. This phenomenon called gaze cueing can be conceptualized as a triadic interaction involving a gaze initiator, a gaze follower and a gaze target, i.

View Article and Find Full Text PDF

Our perceptual reality relies on inferences about the causal structure of the world given by multiple sensory inputs. In ecological settings, multisensory events that cohere in time and space benefit inferential processes: hearing and seeing a speaker enhances speech comprehension, and the acoustic changes of flapping wings naturally pace the motion of a flock of birds. Here, we asked how a few minutes of (multi)sensory training could shape cortical interactions in a subsequent unisensory perceptual task.

View Article and Find Full Text PDF

Determining the state of consciousness in patients with disorders of consciousness is a challenging practical and theoretical problem. Recent findings suggest that multiple markers of brain activity extracted from the EEG may index the state of consciousness in the human brain. Furthermore, machine learning has been found to optimize their capacity to discriminate different states of consciousness in clinical practice.

View Article and Find Full Text PDF

Cognitive neuroscience questions are commonly tested with experiments that involve a cohort of subjects. The cohort can consist of a handful of subjects for small studies to hundreds or thousands of subjects in open datasets. While there exist various online resources to get started with the analysis of magnetoencephalography (MEG) or electroencephalography (EEG) data, such educational materials are usually restricted to the analysis of a single subject.

View Article and Find Full Text PDF

Background: The prognosis value of early clinical diagnosis of consciousness impairment is documented by an extremely limited number of studies, whereas it may convey important information to guide medical decisions.

Objective: We aimed at determining if patients diagnosed at an early stage (<90 days after brain injury) as being in the minimally conscious state (MCS) have a better prognosis than patients in the vegetative state/Unresponsive Wakefulness syndrome (VS/UWS), independent of care limitations or withdrawal decisions.

Methods: Patients hospitalized in ICUs of the Pitié-Salpêtrière Hospital (Paris, France) from November 2008 to January 2011 were included and evaluated behaviourally with standardized assessment and with the Coma Recovery Scale-Revised as being either in the VS/UWS or in the MCS.

View Article and Find Full Text PDF

Objective: We here aimed at characterizing heart-brain interactions in patients with disorders of consciousness. We tested how this information impacts data-driven classification between unresponsive and minimally conscious patients.

Methods: A cohort of 127 patients in vegetative state/unresponsive wakefulness syndrome (VS/UWS; n = 70) and minimally conscious state (MCS; n = 57) were presented with the local-global auditory oddball paradigm, which distinguishes 2 levels of processing: short-term deviation of local auditory regularities and global long-term rule violations.

View Article and Find Full Text PDF

We present an automated algorithm for unified rejection and repair of bad trials in magnetoencephalography (MEG) and electroencephalography (EEG) signals. Our method capitalizes on cross-validation in conjunction with a robust evaluation metric to estimate the optimal peak-to-peak threshold - a quantity commonly used for identifying bad trials in M/EEG. This approach is then extended to a more sophisticated algorithm which estimates this threshold for each sensor yielding trial-wise bad sensors.

View Article and Find Full Text PDF