Int J Environ Res Public Health
April 2023
Firefighters are occupationally exposed to chemicals that may affect fertility. To investigate this effect, firefighters were recruited to contribute blood, urine, breast milk or semen samples to (1) evaluate chemical concentrations and semen parameters against fertility standards and the general population; (2) assess correlations between chemical concentrations and demographics, fire exposure and reproductive history; and (3) consider how occupational exposures may affect reproduction. A total of 774 firefighters completed the online survey, and 97 firefighters produced 125 urine samples, 113 plasma samples, 46 breast milk samples and 23 semen samples.
View Article and Find Full Text PDFFirefighters are occupationally exposed to heat intensities and chemical concentrations that may affect fertility. Twenty firefighters participated in an exploratory study assessing fertility of firefighters via an online survey and semen analysis. Data analysis included consideration of demographic characteristics, reproductive history and occupational exposures.
View Article and Find Full Text PDFWith the advancement of data-intensive technologies, such as image-guided radiation therapy (IGRT) and intensity-modulated radiation therapy (IMRT), the amount and complexity of data to be transferred between clinical subsystems have increased beyond the reach of manual checking. As a result, unintended treatment deviations (e.g.
View Article and Find Full Text PDFFirefighter uniforms protect firefighters from exposure to potentially harmful chemicals including a range of semi-volatile organic compounds (SVOCs). Contaminated uniforms can become a secondary source of firefighters' exposure to these chemicals. There is inconsistency on the removal efficiency of SVOCs during the cleaning, laundering and field decontamination of firefighting uniforms.
View Article and Find Full Text PDFFirefighters are exposed to a wide variety of chemicals including polycyclic aromatic hydrocarbons (PAHs) while attending fire scenes. The objective of this study was to understand the exposure of firefighters to PAHs when attending simulated compartment fires that consisted of either a diesel pan or particleboard fire. Firefighters remained in the compartment fires for 15 min while using standard gear including self contained breathing apparatus (SCBA).
View Article and Find Full Text PDFFirefighters are exposed to a wide range of toxic chemicals due to combustion, with numerous biomonitoring studies completed that have assessed exposure. Many of these studies focus on individual classes of chemicals, with a few considering a broad range of systemic exposures. As yet, no review process has been undertaken to comprehensively examine these studies.
View Article and Find Full Text PDFFirefighters are exposed to a wide range of chemicals whilst on duty, including polycyclic aromatic hydrocarbons (PAHs), organophosphate flame-retardants (OPFRs), and polybrominated diphenyl ethers (PBDEs). These groups of chemicals are related to combustion emissions. PAHs are formed during combustion.
View Article and Find Full Text PDFFirefighting is an occupation with exposure to a wide range of chemicals by means of inhalation, ingestion or dermal contact. Although advancements in personal protective clothing and equipment have reduced the risks for acute exposure during fire suppression operations, chronic exposure may still be present at elevated levels in fire stations. The aim of this study was to assess chemicals in air and on surfaces in fire stations, compare this with other indoor environments, and use this data to estimate firefighter exposure within the fire station.
View Article and Find Full Text PDFSince 2009, a 4D treatment planning workshop has taken place annually, gathering researchers working on the treatment of moving targets, mainly with scanned ion beams. Topics discussed during the workshops range from problems of time resolved imaging, the challenges of motion modelling, the implementation of 4D capabilities for treatment planning, up to different aspects related to 4D dosimetry and treatment verification. This report gives an overview on topics discussed at the 4D workshops in 2014 and 2015.
View Article and Find Full Text PDFPurpose: The paper considers the fractionation problem in intensity modulated proton therapy (IMPT). Conventionally, IMPT fields are optimized independently of the fractionation scheme. In this work, we discuss the simultaneous optimization of fractionation scheme and pencil beam intensities.
View Article and Find Full Text PDFIntensity-modulated proton therapy (IMPT) delivered with beam scanning is currently available at a limited number of proton centers. However, a simplified form of IMPT, the technique of field 'patching', has long been a standard practice in proton therapy centers. In field patching, different parts of the target volume are treated from different directions, i.
View Article and Find Full Text PDFThe physical characteristics of proton beams are appealing for cancer therapy. The rapid increase in operational and planned proton therapy facilities may suggest that this technology is a "plug-and-play" valuable addition to the arsenal of the radiation oncologist and medical physicist. In reality, the technology is still evolving, so planning and delivery of proton therapy in patients face many practical challenges.
View Article and Find Full Text PDFIntroduction: The physical properties of proton beam radiation may offer advantages for treating patients with non-small-cell lung cancer (NSCLC). However, its utility for the treatment of medically inoperable stage I NSCLC patients with stereotactic body radiation therapy (SBRT) is unknown.
Methods: Outcomes for patients with medically inoperable stage I NSCLC treated with proton SBRT were retrospectively analyzed.
Introduction: This multicentric in silico trial compares photon and proton radiotherapy for non-small cell lung cancer patients. The hypothesis is that proton radiotherapy decreases the dose and the volume of irradiated normal tissues even when escalating to the maximum tolerable dose of one or more of the organs at risk (OAR).
Methods: Twenty-five patients, stage IA-IIIB, were prospectively included.
Nowadays, Monte Carlo models of proton therapy treatment heads are being used to improve beam delivery systems and to calculate the radiation field for patient dose calculations. The achievable accuracy of the model depends on the exact knowledge of the treatment head geometry and time structure, the material characteristics, and the underlying physics. This work aimed at studying the uncertainties in treatment head simulations for passive scattering proton therapy.
View Article and Find Full Text PDFThe transfer of radiation therapy data among the various subsystems required for external beam treatments is subject to error. Hence, the establishment and management of a data transfer quality assurance program is strongly recommended. It should cover the QA of data transfers of patient specific treatments, imaging data, manually handled data and historical treatment records.
View Article and Find Full Text PDFPurpose: To quantify daily variations in the anatomy of patients undergoing radiation therapy for prostate carcinoma, to estimate their effect on dose distribution, and to evaluate the effectiveness of current standard planning and setup approaches employed in proton therapy.
Methods: We used series of computed tomography data, which included the pretreatment scan, and between 21 and 43 in-room scans acquired on different treatment days, from 10 patients treated with intensity-modulated radiation therapy at Morristown Memorial Hospital. Variations in femur rotation angles, thickness of subcutaneous adipose tissue, and physical depth to the distal surface of the prostate for lateral beam arrangement were recorded.
This report introduces a framework for comparing radiotherapy treatment planning in multicentric in silico clinical trials. Quality assurance, data incompatibility, transfer and storage issues, and uniform analysis of results are discussed. The solutions that are given provide a useful guide for the set-up of future multicentric planning studies or public repositories of high quality data.
View Article and Find Full Text PDFPurpose: The aim of this manuscript is to describe the direct measurement of absolute absorbed dose to water in a scanned proton radiotherapy beam using a water calorimeter primary standard.
Methods: The McGill water calorimeter, which has been validated in photon and electron beams as well as in HDR 192Ir brachytherapy, was used to measure the absorbed dose to water in double scattering and scanning proton irradiations. The measurements were made at the Massachusetts General Hospital proton radiotherapy facility.
Int J Radiat Oncol Biol Phys
February 2011
Purpose: Common practice in proton radiotherapy is to deliver a subset of all fields in the treatment plan on any given treatment day. We investigate using biological modeling if the resulting variation in daily dose to normal tissues has a relevant detrimental biological effect.
Methods And Materials: For four patient groups, the cumulative normalized total dose (NTD) was determined for normal tissues (OARs) of each patient using the clinically delivered fractionation schedule (FS(clin)), and for hypothetical fractionation schedules delivering all fields every day (FS(all)) or only a single field each day (FS(single)).
Purpose: For 23 patients, an off-line positron emission tomography scan and a computed tomography scan after proton radiotherapy was performed at the Massachusetts General Hospital to assess in vivo treatment verification. A well-balanced population of patients was investigated to assess the effect of the tumor location on the accuracy of the technique.
Methods And Materials: Range verification was achieved by comparing the measured positron emission tomography activity distributions with the corresponding Monte Carlo-simulated distributions.
At the Francis H. Burr Proton Therapy Center field specific output factors (i.e.
View Article and Find Full Text PDFProton radiotherapy centers that currently use passively scattered proton beams do field specific calibrations for a non-negligible fraction of treatment fields, which is time and resource consuming. Our improved understanding of the passive scattering mode of the IBA universal nozzle, especially of the current modulation function, allowed us to re-commission our treatment control system for accurate delivery of SOBPs of any range and modulation, and to predict the output for each of these fields. We moved away from individual field calibrations to a state where continued quality assurance of SOBP field delivery is ensured by limited system-wide measurements that only require one hour per week.
View Article and Find Full Text PDFA mini-multileaf collimator (MMLC) was mounted as a field shaping collimator in a proton beamline at the Massachusetts General Hospital. The purpose is to evaluate the device's dosimetric and mechanical properties for the use in a proton beamline. For this evaluation, the authors compared MMLC and brass aperture shaped dose distributions with regard to lateral and depth dose properties.
View Article and Find Full Text PDF