J Inorg Biochem
October 2023
Sulfite oxidase (SO) deficiency, an inherited disease that causes severe neonatal neurological problems and early death, arises from defects in the biosynthesis of the molybdenum cofactor (Moco) (general sulfite oxidase deficiency) or from inborn errors in the SUOX gene for SO (isolated sulfite oxidase deficiency, ISOD). The X-ray structure of the highly homologous homonuclear dimeric chicken sulfite oxidase (cSO) provides a template for locating ISOD mutation sites in human sulfite oxidase (hSO). Catalysis occurs within an individual subunit of hSO, but mutations that disrupt the hSO dimer are pathological.
View Article and Find Full Text PDFOver 50 molybdenum enzymes in three distinct families (sulfite oxidase, xanthine oxidase, DMSO reductase) are known, and representative X-ray crystal structures are available for all families. Structural analogues that replicate the coordination about the Mo atom in the absence of surrounding protein have been synthesized and characterized. The properties of metal complexes of non-innocent dithiolene ligands and their oxidized counter parts, dithiones, are summarized.
View Article and Find Full Text PDFInorganics (Basel)
March 2020
Here we highlight past work on metal-dithiolene interactions and how the unique electronic structure of the metal-dithiolene unit contributes to both the oxidative and reductive half reactions in pyranopterin molybdenum and tungsten enzymes. The metallodithiolene electronic structures detailed here were interrogated using multiple ground and excited state spectroscopic probes on the enzymes and their small molecule analogs. The spectroscopic results have been interpreted in the context of bonding and spectroscopic calculations, and the pseudo-Jahn-Teller effect.
View Article and Find Full Text PDFA multitechnique spectroscopic and theoretical study of the CpM(benzenedithiolato) (M = Ti, V, Mo; Cp = η-CH) series provides deep insight into dithiolene electronic structure contributions to electron transfer reactivity and reduction potential modulation in pyranopterin molybdenum enzymes. This work explains the magnitude of the dithiolene folding distortion and the concomitant changes in metal-ligand covalency that are sensitive to electronic structure changes as a function of d-electron occupancy in the redox orbital. It is shown that the large fold angle differences correlate with covalency, and the fold angle distortion is due to a pseudo-Jahn-Teller (PJT) effect.
View Article and Find Full Text PDFSulfite-oxidizing enzymes from eukaryotes and prokaryotes have five-coordinate distorted square-pyramidal coordination about the molybdenum atom. The paramagnetic Mo(v) state is easily generated, and over the years four distinct CW EPR spectra have been identified, depending upon enzyme source and the reaction conditions, namely high and low pH (hpH and lpH), phosphate inhibited (P) and sulfite (or blocked). Extensive studies of these paramagnetic forms of sulfite-oxidizing enzymes using variable frequency pulsed electron spin echo (ESE) spectroscopy, isotopic labeling and density functional theory (DFT) calculations have led to the consensus structures that are described here.
View Article and Find Full Text PDFVet Parasitol Reg Stud Reports
December 2015
Bovine eimeriosis is a common, globally distributed infection in housed calves aged from 3 to 12weeks. To date, no national prevalence study revealing the occurrence and distribution of Eimeria species under Swedish environmental and farming conditions has been performed. This study revealed the excretion of Eimeria bovis or Eimeria zuernii (alone or together) in 23% of all sampled calves (N=541) and 61% of all herds (N=99).
View Article and Find Full Text PDFIn this multicentric, randomised, blinded and placebo-controlled field study, the effect of treatment with toltrazuril (Baycox(®) Bovis, Bayer) on oocyst excretion, diarrhoea score and weight gain was studied in Danish dairy herds with confirmed history of eimeriosis (coccidiosis) and prevalence of Eimeria bovis and Eimeria zuernii. Three commercial herds and a total of 71 calves, aged 48 - 135 days, were included. Treatment with a single oral dose of toltrazuril (15 mg/kg) was given after relocation to common pens and one week before expected outbreak of eimeriosis.
View Article and Find Full Text PDFSulfite-oxidizing enzymes (SOEs) are molybdenum enzymes that exist in almost all forms of life where they carry out important functions in protecting cells and organisms against sulfite-induced damage. Due to their nearly ubiquitous presence in living cells, these enzymes can be assumed to be evolutionarily ancient, and this is reflected in the fact that the basic domain architecture and fold structure of all sulfite-oxidizing enzymes studied so far are similar. The Mo centers of all SOEs have five-coordinate square pyramidal coordination geometry, which incorporates a pyranopterin dithiolene cofactor.
View Article and Find Full Text PDFSeveral point mutations in the gene of human sulfite oxidase (hSO) result in isolated sulfite oxidase deficiency, an inherited metabolic disorder. Three conserved residues (H304, R309, K322) are hydrogen bonded to the phosphate group of the molybdenum cofactor, and the R309H and K322R mutations are responsible for isolated sulfite oxidase deficiency. The kinetic effects of the K322R mutation have been previously reported (Rajapakshe et al.
View Article and Find Full Text PDFMolybdenum enzymes contain at least one pyranopterin dithiolate (molybdopterin, MPT) moiety that coordinates Mo through two dithiolate (dithiolene) sulfur atoms. For sulfite oxidase (SO), hyperfine interactions (hfi) and nuclear quadrupole interactions (nqi) of magnetic nuclei (I ≠ 0) near the Mo(V) (d(1)) center have been measured using high-resolution pulsed electron paramagnetic resonance (EPR) methods and interpreted with the help of density functional theory (DFT) calculations. These have provided important insights about the active site structure and the reaction mechanism of the enzyme.
View Article and Find Full Text PDFSulfite oxidase (SO) is a vital metabolic enzyme that catalyzes the oxidation of toxic sulfite to sulfate. The proposed mechanism of this molybdenum cofactor dependent enzyme involves two one-electron intramolecular electron transfer (IET) steps from the molybdenum center to the iron of the b 5-type heme and two one-electron intermolecular electron transfer steps from the heme to cytochrome c. This work focuses on how the electrostatic interaction between two conserved amino acid residues, R472 and D342, in human SO (hSO) affects catalysis.
View Article and Find Full Text PDFThe study collected up-to-date data on prevalence and importance of Eimeria infections in Danish dairy calves with suspected clinical eimeriosis and analysed correlation between Eimeria spp., oocyst excretion and diarrhoea. From October 2010 through August 2011, veterinarians collected faecal samples from dairy herds (n = 52) with > 50 cows and a history of diarrhoea in young stock.
View Article and Find Full Text PDFIn this work, the experimental conditions and parameters necessary to optimize the long-distance (≥ 60 Å) Double Electron-Electron Resonance (DEER) measurements of biomacromolecules labeled with Gd(III) tags are analyzed. The specific parameters discussed are the temperature, microwave band, the separation between the pumping and observation frequencies, pulse train repetition rate, pulse durations and pulse positioning in the electron paramagnetic resonance spectrum. It was found that: (i) in optimized DEER measurements, the observation pulses have to be applied at the maximum of the EPR spectrum; (ii) the optimal temperature range for K-band measurements is 14-17 K, while in W-band the optimal temperatures are between 6-9 K; (iii) W-band is preferable to K-band for DEER measurements.
View Article and Find Full Text PDFThe construction and performance of a -band pulsed electron paramagnetic resonance (EPR) cryogenic probehead that incorporates dielectric resonator (DR) is presented. We demonstrate that the use of DR allows one to optimize pulsed double electron-electron resonance (DEER) measurements utilizing large resonator bandwidth and large amplitude of the microwave field . In DEER measurements of Gd-based spin labels, use of this probe finally allows one to implement the potentials of Gd-based labels in distance measurements.
View Article and Find Full Text PDFSulfite oxidizing enzymes (SOEs), including sulfite oxidase (SO) and bacterial sulfite dehydrogenase (SDH), catalyze the oxidation of sulfite (SO(3) (2-)) to sulfate (SO(4) (2-)). The active sites of SO and SDH are nearly identical, each having a 5-coordinate, pseudo-square-pyramidal Mo with an axial oxo ligand and three equatorial sulfur donor atoms. One sulfur is from a conserved Cys residue and two are from a pyranopterindithiolene (molybdopterin, MPT) cofactor.
View Article and Find Full Text PDFHuman sulfite oxidase (hSO), an essential molybdoheme enzyme, catalyzes the oxidation of toxic sulfite to sulfate. The proposed catalytic cycle includes two, one-electron intramolecular electron transfers (IET) between the molybdenum (Mo) and the heme domains. Rapid IET rates are ascribed to conformational changes that bring the two domains into close proximity to one another.
View Article and Find Full Text PDFBackground: [corrected] Anaplasma phagocytophilum (formerly Ehrlichia phagocytophila) causes the disease tick-borne fever (TBF) in domestic ruminants and has for decades been one of the main scourges for the sheep industry in the coastal areas of Norway. Current control strategies are based on reduction of tick infestation by chemical acaricides.
Methods: In the present study, we investigated if frequent pour-on applications of pyrethroids would reduce tick infestion rate and seroprevalence of A.
Intramolecular electron transfer (IET) between the molybdenum and heme centers of vertebrate sulfite oxidase (SO) is proposed to be a key step in the catalytic cycle of the enzyme. However, the X-ray crystallographic distance between these centers, R(MoFe) = 32.3 Å, appears to be too long for the rapid IET rates observed in liquid solution.
View Article and Find Full Text PDFIn our previous study of the fatal R160Q mutant of human sulfite oxidase (hSO) at low pH (Astashkin et al. J. Am.
View Article and Find Full Text PDFSulfite oxidase (SO) is a molybdoheme enzyme that is important in sulfur catabolism, and mutations in the active site region are known to cause SO deficiency disorder in humans. This investigation probes the effects that mutating aromatic residues (Y273, W338, and H337) in the molybdenum-containing domain of human SO have on both the intramolecular electron transfer (IET) rate between the molybdenum and iron centers using laser flash photolysis and on catalytic turnover via steady-state kinetic analysis. The W338 and H337 mutants show large decreases in their IET rate constants (k (ET)) relative to the wild-type values, suggesting the importance of these residues for rapid IET.
View Article and Find Full Text PDFThe electronic interactions between metals and dithiolenes are important in the biological processes of many metalloenzymes as well as in diverse chemical and material applications. Of special note is the ability of the dithiolene ligand to support metal centers in multiple coordination environments and oxidation states. To better understand the nature of metal-dithiolene electronic interactions, new capabilities in gas-phase core photoelectron spectroscopy for molecules with high sublimation temperatures have been developed and applied to a series of molecules of the type Cp(2)M(bdt) (Cp = η(5)-cyclopentadienyl, M = Ti, V, Mo, and bdt = benzenedithiolato).
View Article and Find Full Text PDFMitochondrial amidoxime reducing components (mARC-1 and mARC-2) represent a novel group of Mo-containing enzymes in eukaryotes. These proteins form the catalytic part of a three-component enzyme complex known to be responsible for the reductive activation of several N-hydroxylated prodrugs. No X-ray crystal structures are available for these enzymes as yet.
View Article and Find Full Text PDFThis work demonstrates the feasibility of using Gd(III) tags for long-range Double Electron Electron Resonance (DEER) distance measurements in biomacromolecules. Double-stranded 14- base pair Gd(III)-DNA conjugates were synthesized and investigated at K(a) band. For the longest Gd(III) tag the average distance and average deviation between Gd(III) ions determined from the DEER time domains was about 59±12Å.
View Article and Find Full Text PDFThe catalytic mechanisms of sulfite oxidizing enzymes (SOEs) have been investigated by multi-frequency pulsed EPR measurements of "difficult" magnetic nuclei (35.37Cl, 33S, 17O) associated with the Mo(v) center. Extensive DFT calculations have been used to relate the experimental magnetic resonance parameters of these nuclei to specific active site structures.
View Article and Find Full Text PDF