Publications by authors named "Eneas Gomes Filho"

Our working hypothesis was that magnesium (Mg) supplementation modulates plant performance under low water availability and improves drought tolerance in soybean genotypes. Plants of Bônus 8579, M8808 and TMG1180 genotypes were grown under field conditions and subjected to three water stress treatments (control, moderate and severe stress) and three Mg levels [0.9 (low), 1.

View Article and Find Full Text PDF

Plants trigger endoplasmic reticulum (ER) pathways to survive stresses, but the assistance of ER in plant tolerance still needs to be explored. Thus, we selected sensitive and tolerant contrasting abiotic stress sorghum varieties to test if they present a degree of tolerance to ER stress. Accordingly, this work evaluated crescent concentrations of tunicamycin (TM µg mL): control (0), lower (0.

View Article and Find Full Text PDF

Identifying cultivars of leguminous crops exhibiting drought resistance has become crucial in addressing water scarcity issues. This investigative study aimed to select soybean and cowpea cultivars with enhanced potential to grow under water restriction during the vegetative stage. Two parallel trials were conducted using seven soybean (AS3810IPRO, M8644IPRO, TMG1180RR, NS 8338IPRO, BMX81I81IPRO, M8808IPRO, and BÔNUS8579IPRO) and cowpea cultivars (Aracê, Novaera, Pajeú, Pitiúba, Tumucumaque, TVU, and Xique-xique) under four water levels (75, 60, 45, and 30% field capacity-FC) over 21 days.

View Article and Find Full Text PDF

The present study evaluated the seminal plasma metabolome of Bos indicus Guzerá bulls with good (n = 4) and poor (n = 5) sperm freezability. Animals were raised in natural pasture of a 'Caatinga' ecosystem, in the semi-arid region of Brazil. Seminal plasma samples were subjected to gas chromatography coupled to mass spectrometry and data, analysed using bioinformatics tools (Cytoscape with the MetScape plug-in).

View Article and Find Full Text PDF

Environmental stresses disturb the endoplasmic reticulum (ER) protein folding. However, primary metabolic responses induced by ER stress remain unclear. Thus, we investigated the morphophysiological and metabolomic changes under ER stress, induced by dithiothreitol (DTT) and tunicamycin (TM) treatments in sorghum seedlings from 24 to 96 h.

View Article and Find Full Text PDF

This study evaluate growth, gas exchange, solute accumulation and activity of antioxidant enzymes in dwarf cashew clones subjected to salinity. Shoot dry mass reduced 26.8% (CCP06) and 41.

View Article and Find Full Text PDF

Key Message: HO priming reprograms essential proteins' expression to help plants survive, promoting responsive and unresponsive proteins adjustment to salt stress.

Abstacrt: Priming is a powerful strategy to enhance abiotic stress tolerance in plants. Despite this, there is scarce information about the mechanisms induced by HO priming for salt stress tolerance, particularly on proteome modulation.

View Article and Find Full Text PDF

Hydrogen peroxide priming has emerged as a powerful strategy to trigger multiple responses involved in plant acclimation that reinforce tolerance to abiotic stresses, including salt stress. Thus, this study aimed to investigate the impact of foliar HO priming on the physiological, biochemical, and ultrastructural traits related to photosynthesis of salt-stressed plants. Besides, we provided comparative leaf metabolomic profiles of Zea mays plants under such conditions.

View Article and Find Full Text PDF

This study investigated the proteome modulation and physiological responses of Sorghum bicolor plants grown in nutrient solutions containing nitrate (NO) or ammonium (NH) at 5.0 mM, and subjected to salinity with 75 mM NaCl for ten days. Salinity promoted significant reductions in leaf area, root and shoot dry mass of sorghum plants, regardless of nitrogen source; however, higher growth was observed in ammonium-grown plants.

View Article and Find Full Text PDF

Accumulation of specific metabolites, mainly γ-aminobutyric acid, polyamines, and proline, was essential to homeostasis regulation and differential salt tolerance in sorghum genotypes. Salinity is severe abiotic stress that limits plant growth and development in arid and semi-arid regions. Survival to abiotic stresses depends on metabolic and sometimes even morphological adjustments.

View Article and Find Full Text PDF

Plants have developed mechanisms to avoid harmful effects of Na accumulation, such as the signaling pathway of carrier proteins Na/H (NHX) and salt overly sensitive (SOS). Besides, endoplasmic reticulum (ER) could integrate plant cell response. Thus, we aimed to understand the effects of ER homeostasis impairment, and its relationship to salt stress during early stages of the Sorghum bicolor CSF 20 a salt-tolerant variety.

View Article and Find Full Text PDF
Article Synopsis
  • The study focused on how dark septate endophytic fungi interact with cowpea plants under salt stress, specifically isolating two types of fungi from Vochysia divergens roots.
  • The research found that while salinity negatively affected nutrient levels in cowpea plants, root colonization by the selected fungi improved nitrogen and phosphorus nutrition, promoting growth and photosynthesis.
  • Notably, these beneficial effects were only significant at moderate salinity levels, indicating a limit to the fungi's positive impact in highly saline conditions.
View Article and Find Full Text PDF

Mitigation of deleterious effects of salinity promoted by exogenous proline can be partially explained by changes in proline enzymatic metabolism and expression of specific proline-related genes. Proline accumulation is a usual response to salinity. We studied the ability of exogenous proline to mitigate the salt harmful effects in sorghum (Sorghum bicolor) leaves.

View Article and Find Full Text PDF

Wood properties influence the leaf life span (LL) of tree crowns. As lignin is an important component of wood and the water transport system, we investigated its relationship with embolism resistance and the LL of several tree species in a seasonally dry tropical ecosystem. We determined total lignin and the monomer contents of guaiacyl (G) and syringyl (S) and related them to wood traits and xylem vulnerability to embolism (Ψ ) for the most common species of the Brazilian semiarid, locally known as Caatinga.

View Article and Find Full Text PDF

The salt overly sensitive (SOS) pathway is the only mechanism known for Na extrusion in plant cells. SOS pathway activation involves Ca-sensing proteins, such as calcineurin B-like (CBL) proteins, and CBL-interacting protein kinases (CIPKs). In this signalling mechanism, a transit increase in cytosolic Ca concentration triggered by Na accumulation is perceived by CBL (also known as SOS3).

View Article and Find Full Text PDF

Jatropha curcas is an oilseed species that is considered an excellent alternative energy source for fossil-based fuels for growing in arid and semiarid regions, where salinity is becoming a stringent problem to crop production. Our working hypothesis was that nitric oxide (NO) priming enhances salt tolerance of J. curcas during early seedling development.

View Article and Find Full Text PDF

An effective strategy for re-establishing K+ and Na+ homeostasis is a challenge for the improvement of plant performance in saline soil. Specifically, attempts to understand the mechanisms of Na+ extrusion from plant cells, the control of Na+ loading in the xylem and the partitioning of the accumulated Na+ between different plant organs are ongoing. Our goal was to provide insight into how an external nitrogen source affects Na+ accumulation in Sorghum bicolor under saline conditions.

View Article and Find Full Text PDF
Article Synopsis
  • Jatropha curcas L., a plant found in dry areas, was studied to understand how salt stress affects its seed germination and growth.
  • Salt stress hampers seed germination and increases sodium and chloride levels in the seeds, leading to decreased reserves of lipids and proteins during the initial growth stages.
  • Changes in sugar and amino acid levels were minimal under salt stress, and further analyses revealed significant cellular alterations in seeds exposed to high salinity.
View Article and Find Full Text PDF

Cowpea cultivars differing in salt tolerance reveal differences in protein profiles and adopt different strategies to overcome salt stress. Salt-tolerant cultivar shows induction of proteins related to photosynthesis and energy metabolism. Salinity is a major abiotic stress affecting plant cultivation and productivity.

View Article and Find Full Text PDF

This study was conducted with the objective of testing the hypothesis that tomato fruits from organic farming accumulate more nutritional compounds, such as phenolics and vitamin C as a consequence of the stressing conditions associated with farming system. Growth was reduced in fruits from organic farming while titratable acidity, the soluble solids content and the concentrations in vitamin C were respectively +29%, +57% and +55% higher at the stage of commercial maturity. At that time, the total phenolic content was +139% higher than in the fruits from conventional farming which seems consistent with the more than two times higher activity of phenylalanine ammonia lyase (PAL) we observed throughout fruit development in fruits from organic farming.

View Article and Find Full Text PDF

Cereus jamacaru, a Cactaceae found throughout northeast Brazil, is widely used as cattle food and as an ornamental and medicinal plant. However, there has been little information about the physiological and biochemical aspects involved in its germination. The aim of this study was to investigate its reserve mobilization during germination and early seedling growth.

View Article and Find Full Text PDF

Pretreatment in plants is recognized as a valuable strategy to stimulate plant defenses, leading to better plant development. This study evaluated the effects of H₂O₂ leaf spraying pretreatment on plant growth and investigated the antioxidative mechanisms involved in the response of maize plants to salt stress. It was found that salinity reduced maize seedling growth when compared to control conditions, and H₂O₂ foliar spraying was effective in minimizing this effect.

View Article and Find Full Text PDF

The effect of external inorganic nitrogen and K(+) content on K(+) uptake from low-K(+) solutions and plasma membrane (PM) H(+)-ATPase activity of sorghum roots was studied. Plants were grown for 15 days in full-nutrient solutions containing 0.2 or 1.

View Article and Find Full Text PDF

Pitiúba cowpea [Vigna unguiculata (L.) Walp] seeds were germinated in distilled water (control treatment) or in 100 mM NaCl solution (salt treatment), and RNase was purified from different parts of the seedlings. Seedling growth was reduced by the NaCl treatment.

View Article and Find Full Text PDF