Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases.
View Article and Find Full Text PDFCells have emerged as a promising new form of drug delivery carriers owing to their distinguished advantages such as naturally bypassing immune recognition, intrinsic capability to navigate biological barriers, and access to hard-to-reach tissues via onboarding sensing and active motility. Over the past two decades, a large body of work has focused on understanding the ability of cell carriers to breach biological barriers and to modulate drug pharmacokinetics and pharmacodynamics. These efforts have led to the engineering of various cells for tissue-specific drug delivery.
View Article and Find Full Text PDFObjectives: The purpose of this study was to explore whether team-based learning (TBL) was more effective than traditional didactic lectures (TDLs) in improving medical students' problem-solving and study skills in the clinical course of ophthalmology. In addition, we were also concerned about Chinese students' satisfaction with TBL.
Methods: Our study program involved 275 students of the 5-year clinical medicine program from Central South China University, of which 140 were enrolled in a modified TBL course.
Glaucoma can result in retinal ganglion cell (RGC) death and permanently damaged vision. Pathologically high intraocular pressure (ph-IOP) is the leading cause of damaged vision during glaucoma; however, controlling ph-IOP alone does not entirely prevent the loss of glaucomatous RGCs, and the underlying mechanism remains elusive. In this study, we reported an increase in ferric iron in patients with acute primary angle-closure glaucoma (the most typical glaucoma with ph-IOP damage) compared with the average population by analyzing free iron levels in peripheral serum.
View Article and Find Full Text PDFIn the past five decades, red blood cells (RBCs) have been extensively explored as drug delivery systems due to their distinguishing potential in modulating the pharmacokinetic, pharmacodynamics, and biological activity of carried payloads. The extensive interests in RBC-mediated drug delivery technologies are in part derived from RBCs' unique biological features such as long circulation time, wide access to many tissues in the body, and low immunogenicity. Owing to these outstanding properties, a large body of efforts have led to the development of various RBC-inspired strategies to enable precise drug delivery with enhanced therapeutic efficacy and reduced off-target toxicity.
View Article and Find Full Text PDFWe report the results of experiments designed to evaluate the performance of a bubble barrier device for microplastics collection in natural and artificial streams. Bubble barrier is an innovative device based on the principle that pumping air to produce a vertical curtain of small air bubbles along the depth of a waterway creates a sufficient current to direct floating and non-floating particle towards a catchment device. The bubble barrier has been designed and already tested in rivers.
View Article and Find Full Text PDFThe study aimed to evaluate the effect of intraocular pressure (IOP) reduction on macular and peripapillary microcirculation in patients with Posner-Schlossman syndrome (PSS) by optical coherence tomography angiography (OCTA). A prospective comparative study was conducted. Patients diagnosed with PSS at the Eye Center of Xiangya Hospital, Central South University, from February 2020 to November 2021 were consecutively included.
View Article and Find Full Text PDFPhotocontrolled polymerization offers a convenient way to direct the reaction progress and tailor the polymer structures. Nevertheless, conjugated polymers are yet to be utilized as the photocatalyst in associated reactions. Herein, we employed poly(boron dipyrromethene--fluorene) (PBF), a conjugated polymer with better photostability than eosin Y, as the photocatalyst for photo-RAFT polymerizations of acrylic monomers, and the polymers were obtained with moderately narrow molecular weight distributions.
View Article and Find Full Text PDFFunctionalized biocarriers that can perform bio-orthogonal reactions in tumor cells may provide solutions to overcome the efflux of the chemotherapeutic agent from drug-resistant tumor cells. Herein, we report the enrichment of therapeutic drugs in tumor cells through intracellular click reaction with functionalized bacteria. Specifically, an intracellular bioactive drug enrichment template (OPV@) is constructed by combining positively charged oligo(phenylene-vinylene)-alkyne (OPV-C≡CH) with via electrostatic interaction.
View Article and Find Full Text PDFInside living cells, regulation of catalytic activity of artificial enzymes remains challenging due to issues such as biocompatibility, efficiency, and stability of the catalyst, by which the practical applications of artificial enzymes have been severely hindered. Here, an artificial enzyme, PTT-SGH, with responsiveness to reactive oxygen species (ROS), was obtained by introducing a catalytic histidine residue to pentaerythritol tetra(3-mercaptopropionate) (PTT). The artificial enzyme formed large aggregates in cells via the intracellular ROS-mediated oxidation of thiol groups.
View Article and Find Full Text PDFA printable ink composed of a photoactive cationic conjugated poly(phenylene vinylene) derivative (PPV) and gelatin/alginate/hyaluronic acid is developed for 3D printing artificial skin patches. This patch shows excellent photodynamic therapy-based anti-infection superiority and outstanding bioactivity to facilitate wound repair. This study contributes to design new conjugated polymer inks for manufacturing functional skin patches.
View Article and Find Full Text PDFRemote control of the therapeutic process is an ideal strategy for maximizing efficacy and avoiding side effects, especially for cancer immunotherapy. Herein, a conjugated polymer nanoparticles (CPNs)-mediated optogenetic system for in situ activation of immunotherapy under near-infrared laser irradiation is reported. This system is composed of photothermal CPNs and interferon-gamma (IFN-γ) plasmid driven by heat shock promoter HSP70.
View Article and Find Full Text PDF3D printing of stem cells provides a tremendous opportunity to tissue engineering in regenerative medicine. However, developing new bioactive materials to rationally augment stem cell viability is still an enormous challenge owing to the nutritionally deficient environment caused by the limited-penetration distance of nutrition when cells are encapsulated within biomaterials. In this work, a cationic conjugated polythiophene derivative, poly[3-(3'-,,-triethylamino-1'-propyloxy)-4-methyl-2,5-thiophene hydrochloride] (PMNT), is designed and integrated into an anionic gelatin/alginate matrix to develop a new 3D bioprintable conjugated polymer ink Gel/Alg/PMNT, while the electrostatic interaction can assist PMNT to anchor inside ink without severe diffusional loss.
View Article and Find Full Text PDFDrug Deliv Transl Res
August 2021
The importance of detection and treatments of infectious diseases has been stressed to the world by the ongoing COVID-19 pandemic. As a substitution of an external light source, self-luminescent therapeutics featuring in situ light emission aims to address the lack of tissue penetration in conventional photodynamic therapy (PDT). Luminol-based self-luminescent systems are successfully incorporated in PDT and detection of pathogens in infectious diseases.
View Article and Find Full Text PDFCell surface engineering with functional polymers is an effective strategy to modulate cell activity. Here, a bio-palladium catalyzed polymerization strategy was developed for in situ synthesis of conjugated polymers on living cell surfaces. Through Sonagashira polymerization, photoactive polyphenyleneethynylene (PPE) is synthesized on the cell surface via cell-generated bio-Pd catalyst.
View Article and Find Full Text PDFTo compare utricular dysfunction with saccular dysfunction in benign paroxysmal positional vertigo (BPPV), based on ocular vestibular evoked myogenic potentials (oVEMP) and cervical VEMP (cVEMP), respectively. We performed a literature search exploring utricular and saccular dysfunction in BPPV patients through June 2020 using oVEMP and cVEMP, respectively. The databases included Pubmed, Embase, CENTRAL, CNKI, Wan Fang Data, and CBM.
View Article and Find Full Text PDFObjective: This article summarizes the experience of diagnosis and treatment of temporal bone fibrous dysplasia (FD) with external auditory canal (EAC) stenosis and secondary cholesteatoma in the Chinese population, in order to improve the quality of life of patients in the future.
Methods: Eleven patients with FD of the temporal bone who underwent surgery were retrospectively reviewed.
Results: All lesions originated from the temporal bone, and all involved of the EAC.
Design and fabrication of fibrous materials by natural biological macromolecules in light of biomimetics to achieve spatially cellular arrangements are highly desirable in tissue engineering. Herein, chromatin-inspired supramolecular fibers formed through the interfacial polyelectrolyte complexation (IPC) process by DNA and histone proteins for encapsulation and in situ differentiation of murine brain-derived neural stem cells (NSCs) are reported. High cell viability of encapsulated NSCs demonstrates the excellent biocompatibility of fibers as 3D scaffolds.
View Article and Find Full Text PDFA new water-soluble reactive perylene tetracarboxylic diimide derivative (PDI-pfp) is designed and synthesized that can realize fast imaging of the endoplasmic reticulum in living cells. The PDI-pfp comprises three functional moieties: perylene tetracarboxylic diimide as fluorescent backbone, poly(ethylene glycol) for providing good water disperse ability, and pentafluorophenol active ester as the reactive group under physiological condition. On the basis of covalent reaction between the active ester group of PDI-pfp and amine groups on cytomembrane, PDI-pfp can rapidly interact with cytomembrane, followed by uptake by living MCF-7 cells within 1 min and also exhibit low cell cytotoxicity.
View Article and Find Full Text PDFTemporal bone chondrosarcoma (TBC) are uncommon primary temporal bone malignancies, and clinicians lack experience in its diagnosis and treatment. The optimal management of patients with tumor of TBC also remains a topic of debate and controversy. This article summarizes the experience of diagnosis and treatment of TBC, in order to improve the quality of life of cancer patients in the future.
View Article and Find Full Text PDFSmall nucleolar RNA host gene 20 (SNHG20) has been reported to serve roles in several types of malignancies, while its role in nasopharyngeal carcinoma remains unknown. In the present study, tumor tissues and adjacent healthy tissues of patient with nasopharyngeal carcinoma, as well as blood samples from patients with nasopharyngeal carcinoma and heathy controls were collected, and expression levels of SNHG20 were detected by reverse transcription-quantitative polymerase chain reaction. Receiver operating characteristic curve and survival curve analyses were performed to evaluate the diagnostic and prognostic values of SNHG20 expression for nasopharyngeal carcinoma, respectively.
View Article and Find Full Text PDFCholera toxin subunit B (CTB) and Fluorogold(FG) are two widely utilized retrograde tracers to assess the number and function of retinal ganglion cells (RGCs). However, the relative advantages and disadvantages of these tracers remain unclear, which may lead to their inappropriate application. In this study, we compared these tracers by separately injecting the tracer into the superior Colliculi (SC) in rats, one or 2 weeks later, the rats were sacrificed, and their retinas, brains, and optic nerves were collected.
View Article and Find Full Text PDFA conjugated polymer-based supramolecular system is designed for discrimination of virus and microbes. The supramolecular system is composed of cationic polythiophene derivative (PT) and barrel-shaped macrocyclic molecular cucurbit[7]uril (CB[7]). Because PT and PT/CB[7] complexes possess different interaction manners toward virus and microbes, the rapid and simple discrimination of virus and microbes was realized through polymer fluorescence intensity change assisting with standard linear discriminant analysis (LDA).
View Article and Find Full Text PDFIn order to reveal the effects of l-tryptophan (Trp) on the physiology and immune response of sea cucumber (Apostichopus japonicus Selenka) exposed to crowding stress, four density groups of sea cucumbers (i.e. 4, 8, 16 and 32 individuals per 40 L water, represented as L, ML, MH and H) were fed with diets containing 0, 1, 3 and 5% l-tryptophan respectively for 75 days.
View Article and Find Full Text PDF