Introduction: An abdominal aortic aneurysm (AAA) is a dilation localized in the infrarenal segment of the abdominal aorta that can expand continuously and rupture if left untreated. Computational methods such as finite element analysis (FEA) are widely used with in silico models to calculate biomechanical predictors of rupture risk while choosing constitutive material properties for the AAA wall and intraluminal thrombus (ILT).
Methods: In the present work, we investigated the effect of different constitutive material properties for the wall and ILT on 21 idealized and 10 unruptured patient-specific AAA geometries.
Abdominal aortic aneurysm (AAA) formation and expansion is highly complex and multifactorial, and the improvement of animal models is an important step to enhance our understanding of AAA pathophysiology. In this study, we explore our ability to influence aneurysm growth in a topical elastase plus β-Aminopropionitrile (BAPN) mouse model by varying elastase concentration and by altering the cross-linking capability of the tissue. To do so, we assess both chronic and acute effects of elastase concentration using volumetric ultrasound.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
November 2021
Abdominal aortic aneurysms (AAAs) are balloonlike dilations in the descending aorta associated with high mortality rates. Between 2009 and 2019, reported ruptured AAAs resulted in ~28,000 deaths while reported unruptured AAAs led to ~15,000 deaths. Automating identification of the presence, 3D geometric structure, and precise location of AAAs can inform clinical risk of AAA rupture and timely interventions.
View Article and Find Full Text PDFPulmonary hypertension (PH) is a progressive disease characterized by elevated pressure and vascular resistance in the pulmonary arteries. Nearly 250,000 hospitalizations occur annually in the US with PH as the primary or secondary condition. A definitive diagnosis of PH requires right heart catheterization (RHC) in addition to a chest computed tomography, a walking test, and others.
View Article and Find Full Text PDFRupture risk assessment of abdominal aortic aneurysms (AAAs) by means of quantifying wall stress is a common biomechanical strategy. However, the clinical translation of this approach has been greatly limited due to the complexity associated with the computational tools required for its implementation. Thus, being able to estimate wall stress using nonbiomechanical markers that can be quantified as a direct outcome of clinical image segmentation would be advantageous in improving the potential implementation of said strategy.
View Article and Find Full Text PDFThe suppression of abdominal aortic aneurysm (AAA) growth by nonsurgical therapy is currently not an option, and AAA is considered an irreversible destructive disease. The formation and development of AAA is associated with the progressive deterioration of the aortic wall. Infiltrated macrophages and resident vascular smooth muscle cells oversecrete matrix metalloproteinases (MMPs), which cause the loss of crucial aortic extracellular matrix (ECM) components, thus weakening the aortic wall.
View Article and Find Full Text PDFPulmonary hypertension (PH) is a chronic progressive disease diagnosed when the pressure in the main pulmonary artery, assessed by right heart catheterization (RHC), is greater than 25 mmHg. Changes in the pulmonary vasculature due to the high pressure yield an increase in the right ventricle (RV) afterload. This starts a remodeling process during which the ventricle exhibits changes in shape and eventually fails.
View Article and Find Full Text PDFMorphological characterization and fluid dynamics simulations were carried out to classify the rupture status of 71 (36 unruptured, 35 ruptured) patient specific cerebral aneurysms using a machine learning approach together with statistical techniques. Eleven morphological and six hemodynamic parameters were evaluated individually and collectively for significance as rupture status predictors. The performance of each parameter was inspected using hypothesis testing, accuracy, confusion matrix, and the area under the receiver operating characteristic curve.
View Article and Find Full Text PDFBiomechanical characterization of abdominal aortic aneurysms (AAAs) has become commonplace in rupture risk assessment studies. However, its translation to the clinic has been greatly limited due to the complexity associated with its tools and their implementation. The unattainability of patient-specific tissue properties leads to the use of generalized population-averaged material models in finite element analyses, which adds a degree of uncertainty to the wall mechanics quantification.
View Article and Find Full Text PDFMyocardial bridging (MB) and coronary atherosclerotic stenosis can impair coronary blood flow and may cause myocardial ischemia or even heart attack. It remains unclear how MB and stenosis are similar or different regarding their impacts on coronary hemodynamics. The purpose of this study was to compare the hemodynamic effects of coronary stenosis and MB using experimental and computational fluid dynamics (CFD) approaches.
View Article and Find Full Text PDFPulmonary hypertension (PH) is a progressive disease affecting approximately 10-52 cases per million, with a higher incidence in women, and with a high mortality associated with right ventricle (RV) failure. In this work, we explore the relationship between hemodynamic indices, calculated from in silico models of the pulmonary circulation, and clinical attributes of RV workload and pathological traits. Thirty-four patient-specific pulmonary arterial tree geometries were reconstructed from computed tomography angiography images and used for volume meshing for subsequent computational fluid dynamics (CFD) simulations.
View Article and Find Full Text PDFThe objective of this work was to perform image-based classification of abdominal aortic aneurysms (AAA) based on their demographic, geometric, and biomechanical attributes. We retrospectively reviewed existing demographics and abdominal computed tomography angiography images of 100 asymptomatic and 50 symptomatic AAA patients who received an elective or emergent repair, respectively, within 1-6 months of their last follow up. An in-house script developed within the MATLAB computational platform was used to segment the clinical images, calculate 53 descriptors of AAA geometry, and generate volume meshes suitable for finite element analysis (FEA).
View Article and Find Full Text PDFIn this work, we provide a quantitative assessment of the biomechanical and geometric features that characterize abdominal aortic aneurysm (AAA) models generated from 19 Asian and 19 Caucasian diameter-matched AAA patients. 3D patient-specific finite element models were generated and used to compute peak wall stress (PWS), 99th percentile wall stress (99th WS), and spatially averaged wall stress (AWS) for each AAA. In addition, 51 global geometric indices were calculated, which quantify the wall thickness, shape, and curvature of each AAA.
View Article and Find Full Text PDFThe objective of this study was to quantify pentagalloyl glucose (PGG) mediated biomechanical restoration of degenerated extracellular matrix (ECM). Planar biaxial tensile testing was performed for native (N), enzyme-treated (collagenase and elastase) (E), and PGG (P) treated porcine abdominal aorta specimens (n = 6 per group). An Ogden material model was fitted to the stress-strain data and finite element computational analyses of simulated native aorta and aneurysmal abdominal aorta were performed.
View Article and Find Full Text PDFTrabeculae carneae are irregular structures that cover the endocardial surfaces of both ventricles and account for a significant portion of human ventricular mass. The role of trabeculae carneae in diastolic and systolic functions of the left ventricle (LV) is not well understood. Thus, the objective of this study was to investigate the functional role of trabeculae carneae in the LV.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
October 2019
Purpose: Assessing the rupture probability of intracranial aneurysms (IAs) remains challenging. Therefore, hemodynamic simulations are increasingly applied toward supporting physicians during treatment planning. However, due to several assumptions, the clinical acceptance of these methods remains limited.
View Article and Find Full Text PDFComputational fluid dynamics (CFD) is increasingly used to study blood flows in patient-specific arteries for understanding certain cardiovascular diseases. The techniques work quite well for relatively simple problems but need improvements when the problems become harder when (a) the geometry becomes complex (eg, a few branches to a full pulmonary artery), (b) the model becomes more complex (eg, fluid-only to coupled fluid-structure interaction), (c) both the fluid and wall models become highly nonlinear, and (d) the computer on which we run the simulation is a supercomputer with tens of thousands of processor cores. To push the limit of CFD in all four fronts, in this paper, we develop and study a highly parallel algorithm for solving a monolithically coupled fluid-structure system for the modeling of the interaction of the blood flow and the arterial wall.
View Article and Find Full Text PDFAbdominal aortic aneurysm (AAA) is a vascular disease characterized by the enlargement of the infrarenal segment of the aorta. A ruptured AAA can cause internal bleeding and carries a high mortality rate, which is why the clinical management of the disease is focused on preventing aneurysm rupture. AAA rupture risk is estimated by the change in maximum diameter over time (i.
View Article and Find Full Text PDFThis erratum is to correct the variable name on the left hand side of Eq. (2). The correct variable name is "Diameter" rather than the stated "Area.
View Article and Find Full Text PDFPentagalloyl glucose (PGG) is an elastin-stabilizing polyphenolic compound that has significant biomedical benefits, such as being a free radical sink, an anti-inflammatory agent, anti-diabetic agent, enzymatic resistant properties, etc. This review article focuses on the important benefits of PGG on vascular health, including its role in tissue mechanics, the different modes of pharmacological administration (e.g.
View Article and Find Full Text PDFCardiovasc Eng Technol
December 2018
Purpose: Advanced morphology analysis and image-based hemodynamic simulations are increasingly used to assess the rupture risk of intracranial aneurysms (IAs). However, the accuracy of those results strongly depends on the quality of the vessel wall segmentation.
Methods: To evaluate state-of-the-art segmentation approaches, the Multiple Aneurysms AnaTomy CHallenge (MATCH) was announced.
Abdominal aortic aneurysm (AAA) is an asymptomatic aortic disease with a survival rate of 20% after rupture. It is a vascular degenerative condition different from occlusive arterial diseases. The size of the aneurysm is the most important determining factor in its clinical management.
View Article and Find Full Text PDFThis study aims to review retrospectively the records of Asian patients diagnosed with abdominal aortic aneurysm to investigate the potential correlations between clinical and morphological parameters within the context of whether the aneurysms were ruptured or unruptured. A machine-learning-based approach is proposed to predict the rupture status of Asian abdominal aortic aneurysm by comparing four different classifiers trained with clinical and geometrical parameters obtained from computed tomography images. The classifiers were applied on 312 patient data sets obtained from a regulatory-approved database.
View Article and Find Full Text PDFThe maximum diameter criterion is the most important factor in the clinical management of abdominal aortic aneurysms (AAA). Consequently, interventional repair is recommended when an aneurysm reaches a critical diameter, typically 5.0 cm in the United States.
View Article and Find Full Text PDF