Liver X receptor (LXR) agonism has theoretical potential for treating NAFLD/NASH, but synthetic agonists induce hyperlipidemia in preclinical models. Desmosterol, which is converted by Δ24-dehydrocholesterol reductase (DHCR24) into cholesterol, is a potent endogenous LXR agonist with anti-inflammatory properties. We aimed to investigate the effects of DHCR24 inhibition on NAFLD/NASH development.
View Article and Find Full Text PDFShort-chain fatty acids, including butyrate, have multiple metabolic benefits in individuals who are lean but not in individuals with metabolic syndrome, with the underlying mechanisms still being unclear. We aimed to investigate the role of gut microbiota in the induction of metabolic benefits of dietary butyrate. We performed antibiotic-induced microbiota depletion of the gut and fecal microbiota transplantation (FMT) in APOE*3-Leiden.
View Article and Find Full Text PDFAnalogues of the hepatokine fibroblast growth factor 21 (FGF21) are in clinical development for type 2 diabetes and nonalcoholic steatohepatitis (NASH) treatment. Although their glucose-lowering and insulin-sensitizing effects have been largely unraveled, the mechanisms by which they alleviate liver injury have only been scarcely addressed. Here, we aimed to unveil the mechanisms underlying the protective effects of FGF21 on NASH using APOE*3-Leiden.
View Article and Find Full Text PDFWithin the human population, considerable variability exists between individuals in their susceptibility to develop obesity and dyslipidemia. In humans, this is thought to be caused by both genetic and environmental variation. APOE*3-Leiden.
View Article and Find Full Text PDFBrown adipocytes within brown adipose tissue (BAT) and beige adipocytes within white adipose tissue dissipate nutritional energy as heat. Studies in mice have shown that activation of thermogenesis in brown and beige adipocytes enhances the lipolytic processing of triglyceride-rich lipoproteins (TRLs) in plasma to supply these adipocytes with fatty acids for oxidation. This process results in formation of TRL remnants that are removed from the circulation through binding of apolipoprotein E (ApoE) on their surface to the LDL receptor (LDLR) on hepatocytes, followed by internalization.
View Article and Find Full Text PDFAims: Fibroblast growth factor (FGF) 21, a key regulator of energy metabolism, is currently evaluated in humans for treatment of type 2 diabetes and non-alcoholic steatohepatitis. However, the effects of FGF21 on cardiovascular benefit, particularly on lipoprotein metabolism in relation to atherogenesis, remain elusive.
Methods And Results: Here, the role of FGF21 in lipoprotein metabolism in relation to atherosclerosis development was investigated by pharmacological administration of a half-life extended recombinant FGF21 protein to hypercholesterolaemic APOE*3-Leiden.
Proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibition, by increasing hepatic low density lipoprotein (LDL) receptor (LDLR) levels, has emerged as a strategy to reduce atherosclerosis by lowering circulating very low density lipoprotein (VLDL)-cholesterol. We hypothesized that the therapeutic effectiveness of PCSK9 inhibition can be increased by accelerating the generation of VLDL remnants, which typically have a high affinity for the LDLR. Therefore, we aimed to investigate whether accelerating lipolytic processing of VLDL by brown fat activation can further lower (V)LDL and reduce atherosclerosis on top of PCSK9 inhibition.
View Article and Find Full Text PDFBackground: C-type lectin receptors, including Dectin-2, are pattern recognition receptors on monocytes and macrophages that mainly recognize sugars and sugar-like structures present on fungi. Activation of C-type lectin receptors induces downstream CARD9 signalling, leading to the production of cytokines. We hypothesized that under hyperglycaemic conditions, as is the case in diabetes mellitus, glycosylated protein (sugar-like) structures activate C-type lectin receptors, leading to immune cell activation and increased atherosclerosis development.
View Article and Find Full Text PDFAims: Brown fat activation accelerates the uptake of cholesterol-enriched remnants by the liver and thereby lowers plasma cholesterol, consequently protecting against atherosclerosis development. Hepatic cholesterol is then converted into bile acids (BAs) that are secreted into the intestine and largely maintained within the enterohepatic circulation. We now aimed to evaluate the effects of prolonged brown fat activation combined with inhibition of intestinal BA reabsorption on plasma cholesterol metabolism and atherosclerosis development.
View Article and Find Full Text PDFTargeting metabolism through bioactive key metabolites is an upcoming future therapeutic strategy. We questioned how modifying intracellular lipid metabolism could be a possible means for alleviating inflammation. Using a recently developed chemical probe (SH42), we inhibited distal cholesterol biosynthesis through selective inhibition of Δ-dehydrocholesterol reductase (DHCR24).
View Article and Find Full Text PDFInflammatory reactions activated by pattern recognition receptors (PRRs) on the membrane of innate immune cells play an important role in atherosclerosis. Whether the PRRs of the C-type lectin receptor (CLR) family including Dectin-2 may be involved in the pathogenesis of atherosclerosis remains largely unknown. Recently, the CLR-adaptor molecule caspase recruitment domain family member 9 (CARD9) has been suggested to play a role in cardiovascular pathologies as it provides the link between CLR activation and transcription of inflammatory cytokines as well as immune cell recruitment.
View Article and Find Full Text PDFObjective: Butyrate exerts metabolic benefits in mice and humans, the underlying mechanisms being still unclear. We aimed to investigate the effect of butyrate on appetite and energy expenditure, and to what extent these two components contribute to the beneficial metabolic effects of butyrate.
Design: Acute effects of butyrate on appetite and its method of action were investigated in mice following an intragastric gavage or intravenous injection of butyrate.
Background: High density lipoprotein (HDL) has been proved to be a protective factor for coronary heart disease. Notably, HDL in atherosclerotic plaques can be nitrated (NO-oxHDL) and chlorinated (Cl-oxHDL) by myeloperoxidase (MPO), likely compromising its cardiovascular protective effects.
Method: Here we determined the effects of NO-oxHDL and Cl-oxHDL on SMC migration using wound healing and transwell assays, proliferation using MTT and BrdU assays, and apoptosis using Annexin-V assay in vitro, as well as on atherosclerotic plaque stability in vivo using a coratid artery collar implantation mice model.
Background: A new mechanism for intercellular communication has recently emerged that involves intercellular transfer of extracellular vesicles (EVs). Several studies have indicated that EVs may play a potential role in cell-to-cell communication between macrophage foam cells and vascular smooth muscle cells (VSMCs) in atherosclerotic lesion.
Methods And Results: This study involved the comparison of circulating EVs from atherosclerotic patients and control participants.
The present study aimed to investigate the time course of changes in microparticles (MPs) in patients with ST-segment elevation myocardial infarction (STEMI) that underwent percutaneous transluminal coronary intervention (PCI). A total of 24 STEMI patients undergoing primary PCI were enrolled, and circulating MPs were detected immediately prior to and after PCI, and at 4, 24 and 48 h post-PCI. Standard Megamix beads, based measurement protocols, were employed to measure MPs of different cell origin, including endothelial MPs (EMPs), platelet MPs (PMPs) and leukocyte-derived MPs (LMPs), which were identified by CD144, CD41 and CD45, respectively.
View Article and Find Full Text PDFEndothelial microparticle (EMP) is a biomarker for endothelial dysfunction. The aim of this study is to investigate the utility of EMP in evaluating coronary intermediate lesions. Participants included 49 patients with coronary intermediate lesions and 24 subjects with normal coronary arteries.
View Article and Find Full Text PDFIntroduction: Adipose-derived stem cells (ADSC) are non-hematopoietic mesenchymal stem cells that have shown great promise in their ability to differentiate into multiple cell lineages. Their ubiquitous nature and the ease of harvesting have attracted the attention of many researchers, and they pose as an ideal candidate for applications in regenerative medicine. Several reports have demonstrated that transplanting ADSC can promote repair of injured tissue and angiogenesis in animal models.
View Article and Find Full Text PDF