Unlabelled: Drought tolerance in rice is controlled by several genes and is inherited quantitatively. Low genetic map density and the use of phenotypic traits that do not reflect the corresponding tolerance level have been obstacles in genetic analyses performed to identify genes that control drought-tolerant traits in rice. The current study aimed to construct a genetic map from high-density single-nucleotide polymorphism (SNP) markers generated from genome sequences of recombinant inbred lines (RILs), derived from IR64 × Hawara Bunar.
View Article and Find Full Text PDFAn efficient anther culture on double-layered media to produce doubled haploid (DH) plants in pepper (Capsicum annuum) was clearly shown to outperformed other techniques such as anther culture on solid medium and direct isolated microspore culture on liquid medium. It was even used for DH production in a cayenne type of hot pepper which was previously known as less responsive or even more recalcitrant to androgenesis than sweet bell pepper. Indeed, anther culture on double-layered media has been routinely used to produce DH plants on broad genotypes of C.
View Article and Find Full Text PDFBemisia tabaci is one of the most threatening pests in many crops. We sequenced part of the mitochondrial cytochrome oxidase I gene from fifty whitefly populations collected in Indonesia, Thailand, India and China. Nineteen unique sequences (haplotypes) of the cytochrome oxidase I were identified in these populations.
View Article and Find Full Text PDFSolanum galapagense is closely related to the cultivated tomato and can show a very good resistance towards whitefly. A segregating population resulting from a cross between the cultivated tomato and a whitefly resistant S. galapagense was created and used for mapping whitefly resistance and related traits, which made it possible to study the genetic basis of the resistance.
View Article and Find Full Text PDFThe inaccessibility of the zygote and proembryos of angiosperms within the surrounding maternal and filial tissues has hampered studies on early plant embryogenesis. Somatic and gametophytic embryo cultures are often used as alternative systems for molecular and biochemical studies on early embryogenesis, but are not widely used in developmental studies due to differences in the early cell division patterns with seed embryos. A new Brassica napus microspore embryo culture system, wherein embryogenesis highly mimics zygotic embryo development, is reported here.
View Article and Find Full Text PDFMicrospore-derived embryo (MDE) cultures are used as a model system to study plant cell totipotency and as an in vitro system to study embryo development. We characterized and compared the transcriptome and proteome of rapeseed (Brassica napus) MDEs from the few-celled stage to the globular/heart stage using two MDE culture systems: conventional cultures in which MDEs initially develop as unorganized clusters that usually lack a suspensor, and a novel suspensor-bearing embryo culture system in which the embryo proper originates from the distal cell of a suspensor-like structure and undergoes the same ordered cell divisions as the zygotic embryo. Improved histodifferentiation of suspensor-bearing MDEs suggests a new role for the suspensor in driving embryo cell identity and patterning.
View Article and Find Full Text PDFGain-of-function studies have shown that ectopic expression of the BABY BOOM (BBM) AP2/ERF domain transcription factor is sufficient to induce spontaneous somatic embryogenesis in Arabidopsis (Arabidopsis thaliana (L.) Heynh) and Brassica napus (B. napus L.
View Article and Find Full Text PDF