J Clin Med
June 2022
Individual patient data (IPD)-based meta-analysis (ACCRUE, meta-analysis of cell-based cardiac studies, NCT01098591) revealed an insufficient effect of intracoronary cell-based therapy in acute myocardial infarction. Patients with ischemic heart failure (iHF) have been treated with reparative cells using percutaneous endocardial, surgical, transvenous or intracoronary cell delivery methods, with variable effects in small randomized or cohort studies. The objective of this meta-analysis was to investigate the safety and efficacy of percutaneous transendocardial cell therapy in patients with iHF.
View Article and Find Full Text PDFTranscriptional profiling of hematopoietic cell subpopulations has helped to characterize the developmental stages of the hematopoietic system and the molecular bases of malignant and non-malignant blood diseases. Previously, only the genes targeted by expression microarrays could be profiled genome-wide. High-throughput RNA sequencing, however, encompasses a broader repertoire of RNA molecules, without restriction to previously annotated genes.
View Article and Find Full Text PDFHeart failure (HF) is one of the leading causes of death worldwide and has reached epidemic proportions in most industrialized nations. Despite major improvements in the treatment and management of the disease, the prognosis for patients with HF remains poor with approximately only half of patients surviving for 5 years or longer after diagnosis. The poor prognosis of HF patients is in part because of irreparable damage to cardiac tissue and concomitant maladaptive changes associated with the disease.
View Article and Find Full Text PDFBactrocera oleae (Diptera: Tephritidae) remains a major pest of olive fruit production worldwide. Current pest management programs largely depend on chemical insecticides, resulting in high economic and environmental costs. Alternative pest control approaches are therefore highly desirable.
View Article and Find Full Text PDFThe Cardiomyopathy-associated gene 5 (Cmya5) encodes myospryn, a large tripartite motif (TRIM)-related protein found predominantly in cardiac and skeletal muscle. Cmya5 is an expression biomarker for a number of diseases affecting striated muscle and may also be a schizophrenia risk gene. To further understand the function of myospryn in striated muscle, we searched for additional myospryn paralogs.
View Article and Find Full Text PDFCardiosphere-derived cell (CDC) infusion into damaged myocardium has shown some reparative effect; this could be improved by better selection of patients and cell subtype. CDCs isolated from patients with ischemic heart disease are able to support vessel formation in vitro but this ability varies between patients. The primary aim of our study was to investigate whether the vascular supportive function of CDCs impacts on their therapeutic potential, with the goal of improving patient stratification.
View Article and Find Full Text PDFCochrane Database Syst Rev
December 2016
Background: A promising approach to the treatment of chronic ischaemic heart disease and congestive heart failure is the use of stem cells. The last decade has seen a plethora of randomised controlled trials developed worldwide, which have generated conflicting results.
Objectives: The critical evaluation of clinical evidence on the safety and efficacy of autologous adult bone marrow-derived stem/progenitor cells as a treatment for chronic ischaemic heart disease and congestive heart failure.
Controversies from basic science, discrepancies from clinical trials, and divergent results from meta-analyses have recently arisen in the field of cell therapies for cardiovascular repair and regeneration. Noticeably, there are almost as many systematic reviews and meta-analyses published as there are well-conducted clinical studies. But how do we disentangle the confusion they have raised? This article addresses why results obtained from systematic reviews and meta-analyses of human cell-based cardiac regeneration therapies are still valid to inform the design of future clinical trials.
View Article and Find Full Text PDFHematopoietic stem/progenitor cells (HSPCs) reside in specialized bone marrow microenvironmental niches, with vascular elements (endothelial/mesenchymal stromal cells) and CXCR4-CXCL12 interactions playing particularly important roles for HSPC entry, retention, and maintenance. The functional effects of CXCL12 are dependent on its local concentration and rely on complex HSPC-niche interactions. Two Junctional Adhesion Molecule family proteins, Junctional Adhesion Molecule-B (JAM)-B and JAM-C, are reported to mediate HSPC-stromal cell interactions, which in turn regulate CXCL12 production by mesenchymal stromal cells (MSCs).
View Article and Find Full Text PDFBackground: Cell transplantation offers a potential therapeutic approach to the repair and regeneration of damaged vascular and cardiac tissue after acute myocardial infarction (AMI). This has resulted in multiple randomised controlled trials (RCTs) across the world.
Objectives: To determine the safety and efficacy of autologous adult bone marrow stem cells as a treatment for acute myocardial infarction (AMI), focusing on clinical outcomes.
Murine models of bone marrow transplantation show that pre-conditioning regimens affect the integrity of the bone marrow endothelium and that the repair of this vascular niche is an essential pre-requisite for successful haematopoietic stem and progenitor cell engraftment. Little is known about the angiogenic pathways that play a role in the repair of the human bone marrow vascular niche. We therefore established an in vitro humanized model, composed of bone marrow stromal and endothelial cells and have identified several pro-angiogenic factors, VEGFA, ANGPT1, CXCL8 and CXCL16, produced by the stromal component of this niche.
View Article and Find Full Text PDFHeart failure (HF) is the major cause of mortality worldwide. For more than a decade, cell-based therapies have been developed as treatment for heart disease as an alternative to current therapies. Trials and systematic reviews have assessed the safety and efficacy of cell therapies in a diverse number of participants and clinical settings.
View Article and Find Full Text PDFRationale: Cell-based therapies are a promising intervention for the treatment of heart failure (HF) secondary to ischemic and nonischemic cardiomyopathy. However, the clinical efficacy of such new treatment requires further evaluation.
Objective: To assess available clinical evidence on the safety and efficacy of cell-based therapies for HF.
The term 'therapeutic angiogenesis' originated almost two decades ago, following evidence that factors that promote blood vessel formation could be delivered to ischaemic tissues and restore blood flow. Following this proof-of-principle, safety and efficacy of the best-studied angiogenic factors (eg, vascular endothelial growth factor) were demonstrated in early clinical studies. Promising results led to the development of larger controlled trials that, unfortunately, have failed to satisfy the initial expectations of therapeutic angiogenesis for ischaemic heart disease.
View Article and Find Full Text PDFBackground: A promising approach to the treatment of chronic ischaemic heart disease (IHD) and heart failure is the use of stem cells. The last decade has seen a plethora of randomised controlled trials (RCTs) developed worldwide which have generated conflicting results.
Objectives: The critical evaluation of clinical evidence on the safety and efficacy of autologous adult bone marrow-derived stem cells (BMSC) as a treatment for chronic ischaemic heart disease (IHD) and heart failure.
Genome-wide association studies have identified common variants in transcription factor 4 (TCF4) as susceptibility loci for schizophrenia, Fuchs' endothelial corneal dystrophy, and primary sclerosing cholangitis. By contrast, rare TCF4 mutations cause Pitt-Hopkins syndrome, a disorder characterized by intellectual disability and developmental delay, and have also been described in patients with other neurodevelopmental disorders. TCF4 therefore sits at the nexus between common and rare disorders.
View Article and Find Full Text PDFHaploinsufficiency of TCF4 causes Pitt-Hopkins syndrome (PTHS): a severe form of mental retardation with phenotypic similarities to Angelman, Mowat-Wilson and Rett syndromes. Genome-wide association studies have also found that common variants in TCF4 are associated with an increased risk of schizophrenia. Although TCF4 is transcription factor, little is known about TCF4-regulated processes in the brain.
View Article and Find Full Text PDFObjective: To evaluate bone marrow stem cell treatment (BMSC) in patients with ischemic heart disease (IHD) and no option of revascularization.
Background: Autologous BMSC therapy has emerged as a novel approach to treat patients with acute myocardial infarction or chronic ischemia and heart failure following percutaneous or surgical revascularization, respectively. However, the effect of the treatment has not been systematic evaluated in patients who are not eligible for revascularization.
To investigate the effects of age and disease on endogenous cardiac progenitor cells, we obtained right atrial and left ventricular epicardial biopsies from patients (n = 22) with chronic ischaemic heart disease and measured doubling time and surface marker expression in explant- and cardiosphere-derived cells (EDCs, CDCs). EDCs could be expanded from all atrial biopsy samples, but sufficient cells for cardiosphere culture were obtained from only 8 of 22 ventricular biopsies. EDCs from both atrium and ventricle contained a higher proportion of c-kit+ cells than CDCs, which contained few such cells.
View Article and Find Full Text PDFAims: To investigate whether there are important sources of heterogeneity between the findings of different clinical trials which administer autologous stem cell treatment for acute myocardial infarction (AMI) and to evaluate what factors may influence the long-term effects of this treatment.
Methods And Results: MEDLINE (1950-January 2011), EMBASE (1974-January 2011), CENTRAL (The Cochrane Library 2011, Issue 1), CINAHL (1982-January 2011), and ongoing trials registers were searched for randomised trials of bone marrow stem cells as treatment for AMI. Hand-searching was used to screen recent, relevant conference proceedings (2005-2010/11).
Background: Stem cell therapy offers a promising approach to the regeneration of damaged vascular and cardiac tissue after acute myocardial infarction (AMI). This has resulted in multiple randomised controlled trials (RCTs) worldwide.
Objectives: To critically evaluate evidence from RCTs on the effectiveness of adult bone marrow-derived stem cells (BMSC) to treat acute myocardial infarction (AMI).
The aim of this study is to investigate the feasibility of using well defined, serum-free freezing solutions with a reduced level of dimethylsulfoxide (DMSO) of 7.5, 5, and 2.5% (v/v) in the combination with polyethylene glycol (PEG) or trehalose to cryopreserve human bone marrow-derived mesenchymal stem cells (hBMSCs), a main source of stem cells for cell therapy and tissue engineering.
View Article and Find Full Text PDFKnowledge of the rate of development of immature cardiomyocytes after implantation into a host heart is important for studies using cell therapy. To assess this functionally, we have implanted rat neonatal cardiomyocytes (NCMs) in normal and infarcted rat heart and re-isolated them for functional assessment. Maturation of implanted bone marrow stromal cells (BMSCs) was compared under similar conditions.
View Article and Find Full Text PDF