Fiber/textile-based actuators have garnered considerable attention due to their distinctive attributes, encompassing higher degrees of freedom, intriguing deformations, and enhanced adaptability to complex structures. Recent studies highlight the development of advanced fibers and textiles, expanding the application scope of fiber/textile-based actuators across diverse emerging fields. Unlike sheet-like soft actuators, fibers/textiles with intricate structures exhibit versatile movements, such as contraction, coiling, bending, and folding, achieved through adjustable strain and stroke.
View Article and Find Full Text PDFSpontaneously harvesting electricity through a water evaporation process is renewable and environmentally friendly, and provides a promising way for self-powered electronics. However, most of evaporation-driven generators are suffering from a limited power supply for practical use. Herein, a high-performance textile-based evaporation-driven electricity generator based on continuous gradient chemical reduced graphene oxide (CG-rGO@TEEG) is obtained by a continuous gradient chemical reduction strategy.
View Article and Find Full Text PDFPhosphor-based security techniques have received widespread attention because they can rely on fascinating optical properties (including multicolor emission and various luminous categories) to meet information protection requirements. Carbon dots (CDs) with multicolor fluorescence (FL) and room-temperature phosphorescence (RTP) show enormous potential in advanced information encryption, yet the achievement of tunable multimodal printable CDs confronts numerous challenges. Herein, liquid CDs with color-tunable properties ranging from blue to red are obtained, and the decay time-tunable RTPs of powdered CDs are achieved with a post-treatment of urea in an o-phenylenediamine/HO/HPO system.
View Article and Find Full Text PDF