At 1 atm pressure, high-quality multiwall carbon nanotubes were synthesized directly from graphite in the absence of catalyst by a one-step water-assisted method.
View Article and Find Full Text PDFA novel three-dimensional copper molybdate with mixed ligands, [[Cu(II)(2,2'-bpy)][Cu(II)(IN)(2)][Mo(4)O(12)(OH)(2)]] (IN(-) = isonicotinate ion, 2,2'-bpy = 2,2'-bipyridine), 1, has been hydrothermally synthesized and structurally characterized, and this compound is built from an unprecedented tetranuclear molybdenum oxide cluster covalently bonded to two types of copper complex fragments, [Cu(II)(2,2'-bpy)](2+) and [Cu(II)(IN)(2)], via terminal oxygen atoms of [MoO(6)] octahedra. Crystal data for compound 1: monoclinic, space group C2/c, a = 16.4755 A, b = 10.
View Article and Find Full Text PDFChem Commun (Camb)
August 2003
Reducing Cu(OH)4(2-) with hydrazine hydrate and glucose in the presence of a structure-directing surfactant at room temperature gave Cu and Cu2O nanotubes/nanorods, respectively, whereas facile hydrothermal treatment of Cu(OH)4(2-) precursor resulted in CuO nanotubes/nanorods.
View Article and Find Full Text PDFThe spherical Lindquist type polyoxometalate, Mo(6)O(19)(2)(-), has been used as a noncoordinating anionic template for the construction of novel three-dimensional lanthanide-aromatic monocarboxylate dimer supramolecular networks [Ln(2)(DNBA)(4)(DMF)(8)][Mo(6)O(19)] (Ln = La 1, Ce 2, and Eu 3, DNBA = 3,5-dinitrobenzoate, DMF = dimethylformamide). The title compounds are characterized by elemental analyses, IR, and single-crystal X-ray diffractions. X-ray diffraction experiments reveal that two Ln(III) ions are bridged by four 3,5-dinitrobenzoate anions as asymmetrically bridging ligands, leading to dimeric cores, [Ln(2)(DNBA)(4)(DMF)(8)](2+); [Ln(2)(DNBA)(4)(DMF)(8)](2+) groups are joined together by pi-pi stacking interactions between the aromatic groups to form a two-dimensional grid-like network; the 2-D supramolecular layers are further extended into 3-D supramolecular networks with 1-D box-like channels by hydrogen-bonding interactions, in which hexamolybdate polyanions reside.
View Article and Find Full Text PDFThree novel polyoxometalate derivatives decorated by transition metal complexes have been hydrothermally synthesized. Compound 1 consists of [PMo(VI)(6)Mo(V)(2)V(IV)(8)O(44)[Co (2,2'-bipy)(2)(H(2)O)](4)](3+) polyoxocations and [PMo(VI)(4-)Mo(V)(4)V(IV)(8)O(44)[Co(2,2'-bipy)(2)(H(2)O)](2)](3-) polyoxoanions, which are both built on mixed-metal tetracapped [PMo(8)V(8)O(44)] subunits covalently bonded to four or two [Co(2,2'-bpy)(2)(H(2)O)](2+) clusters via terminal oxo groups of the capping V atoms. Compound 2 is built on [PMo(VI)(8)V(IV)(6)O(42)[Cu(I)(phen)](2)](5-) clusters constructed from mixed-metal bicapped [PMo(VI)(8)V(IV)(6)O(42)](7-) subunits covalently bonded to two [Cu(phen)](+) fragments in the similar way to 1.
View Article and Find Full Text PDFTwo novel nickel coordination polymers [Ni(2)(2,2'-bipy)(2)(OH)(2)(H(2)btec)](3)(n)(1) and [Ni(2)(1,10'-phen)(2)(H(2)O)(2)(btec)](n)(2) (btec = 1,2,4,5-benzenetetracarboxylate) have been hydrothermally synthesized and characterized by elemental analyses, IR and XPS spectra, TG analysis, X-ray powder diffraction, and single crystal X-ray diffraction. Crystal data for 1: C(90)H(66)N(12)O(30)Ni(6), monoclinic P2(1)/c, a = 10.905(2) A, b = 18.
View Article and Find Full Text PDFReaction of Pb(OH)3- with ClO- in the presence of surfactant CTAB under conventional conditions resulted in PbO2 nanorods, whereas the reaction under hydrothermal conditions afforded Pb3O4 nanorods, as confirmed by X-ray powder diffraction and transmission electron microscopy (TEM). Selected area electron diffraction (SEAD) and high-resolution TEM (HRTEM) revealed that both PbO2 and Pb3O4 nanorods are single crystalline. For the formation of Pb3O4 nanorods, it is reasonable that PbO2 slowly decomposes to Pb3O4 under hydrothermal conditions, while retaining the morphology of PbO2.
View Article and Find Full Text PDFThree novel supramolecular assemblies constructed from polyoxometalate and crown ether building blocks, [(DB18C6)Na(H(2)O)(1.5)](2)Mo(6)O(19).CH(3)CN, 1, and [(Na(DB18C6)(H(2)O)(2))(3)(H(2)O)(2)]XMo(12)O(40).
View Article and Find Full Text PDFZhonghua Kou Qiang Yi Xue Za Zhi
November 2002
Objective: To investigate the proliferative potential of the epithelial cells in odontogenic keratocyst, radicular cyst, dentigerous cyst and ameloblastoma.
Methods: DNA contents and ploidy of basal and spinous cells in keratocyst, radicular cyst, dentigerous cyst, and the peripheral column cells and central reticular cells in ameloblastoma were analysis respectively.
Results: The more and higher DNA contents and the proliferating ploidy of keratocyst and ameloblastoma than those of radicular cyst and dentigerous cyst indicate the active proliferating potential.
Two novel compounds, [Co(4,4'-bipy)(H(2)O)(4)](4-abs)(2).H(2)O (1) and [Mn(4,4'-bipy)(H(2)O)(4)](4-abs)(2).2H(2)O (2) (4,4'-bipy = 4,4'-bipyridine; 4-abs = 4-aminobenzenesulfonate), have been synthesized in aqueous solution and characterized by single-crystal X-ray diffraction, elemental analyses, UV-vis and IR spectra, and TG analysis.
View Article and Find Full Text PDF