Publications by authors named "Enahoro A Iboi"

COVID-19 is a respiratory disease caused by a recently discovered, novel coronavirus, SARS-COV-2. The disease has led to over 81 million confirmed cases of COVID-19, with close to two million deaths. In the current social climate, the risk of COVID-19 infection is driven by individual and public perception of risk and sentiments.

View Article and Find Full Text PDF

The COVID-19 pandemic continues to have a devastating impact on health systems and economies across the globe. Implementing public health measures in tandem with effective vaccination strategies have been instrumental in curtailing the burden of the pandemic. With the three vaccines authorized for use in the U.

View Article and Find Full Text PDF

A novel coronavirus emerged in December of 2019 (COVID-19), causing a pandemic that inflicted unprecedented public health and economic burden in all nooks and corners of the world. Although the control of COVID-19 largely focused on the use of basic public health measures (primarily based on using non-pharmaceutical interventions, such as quarantine, isolation, social-distancing, face mask usage, and community lockdowns) initially, three safe and highly-effective vaccines (by AstraZeneca Inc., Moderna Inc.

View Article and Find Full Text PDF

The novel coronavirus (COVID-19) pandemic that emerged from Wuhan city in December 2019 overwhelmed health systems and paralyzed economies around the world. It became the most important public health challenge facing mankind since the 1918 Spanish flu pandemic. Various theoretical and empirical approaches have been designed and used to gain insight into the transmission dynamics and control of the pandemic.

View Article and Find Full Text PDF

A mathematical model is designed and used to study the transmission dynamics and control of COVID-19 in Nigeria. The model, which was rigorously analysed and parametrized using COVID-19 data published by the Nigeria Centre for Disease Control (NCDC), was used to assess the community-wide impact of various control and mitigation strategies in some jurisdictions within Nigeria (notably the states of Kano and Lagos, and the Federal Capital Territory, Abuja). Numerical simulations of the model showed that COVID-19 can be effectively controlled in Nigeria using moderate levels of social-distancing strategy in the jurisdictions and in the entire nation.

View Article and Find Full Text PDF

The novel coronavirus (COVID-19) that emerged from Wuhan city of China in late December 2019 continue to pose devastating public health and economic challenges across the world. Although the community-wide implementation of basic non-pharmaceutical intervention measures, such as social distancing, quarantine of suspected COVID-19 cases, isolation of confirmed cases, use of face masks in public, contact tracing and testing, have been quite effective in curtailing and mitigating the burden of the pandemic, it is universally believed that the use of a vaccine may be necessary to effectively curtail and eliminating COVID-19 in human populations. This study is based on the use of a mathematical model for assessing the impact of a hypothetical imperfect anti-COVID-19 vaccine on the control of COVID-19 in the United States.

View Article and Find Full Text PDF

The community lockdown measures implemented in the United States from late March to late May of 2020 resulted in a significant reduction in the community transmission of the COVID-19 pandemic throughout the country. However, a number of US states are currently experiencing an alarming post-lockdown resurgence of the pandemic, triggering fears for a devastating second pandemic wave. We designed a mathematical model for addressing the key question of whether or not the universal use of face masks can halt such resurgence (and possibly avert a second wave, without having to undergo another cycle of major community lockdown) in the states of Arizona, Florida, New York and the entire US.

View Article and Find Full Text PDF

Malaria, a deadly infectious disease caused by the protozoan Plasmodium, remains a major public health menace affecting at least half the human race. Although the large-scale usage of insecticides-based control measures, notably long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), have led to a dramatic reduction of the burden of this global scourge between the period 2000 to 2015, the fact that the malaria vector (adult female Anopheles mosquito) has become resistant to all currently-available insecticides potentially makes the current laudable global effort to eradicate malaria by 2040 more challenging. This study presents a novel mathematical model, which couples malaria epidemiology with mosquito population genetics, for assessing the impact of insecticides resistance on malaria epidemiology.

View Article and Find Full Text PDF

A new mathematical model is designed and used to assess the impact of the newly-released Dengvaxia vaccine on the transmission dynamics of two co-circulating dengue strains (where strain 1 consists of dengue serotypes 1, 3 and 4; and strain 2 consists of dengue serotype 2). It is shown that the model exhibits the phenomenon of backward bifurcation when the disease-induced mortality in the host population exceeds a certain threshold value or if the vaccine does not provide perfect protection against infection with the two strains. In the absence of backward bifurcation, the disease-free equilibrium of the model is shown to be globally-asymptotically stable whenever the associated reproduction number is less than unity.

View Article and Find Full Text PDF