Respiratory tract infections are the most common triggers for heart failure in elderly people. The healthy respiratory commensal microbiota can prevent invasion by infectious pathogens and decrease the risk of respiratory tract infections. However, upper respiratory tract (URT) microbiome in the elderly is not well understood.
View Article and Find Full Text PDFGastric cancer (GC) presents a formidable global health challenge, and conventional therapies face efficacy limitations. Ubiquitin-specific protease 7 (USP7) plays pivotal roles in GC development, immune response, and chemo-resistance, making it a promising target. Various USP7 inhibitors have shown selectivity and efficacy in preclinical studies.
View Article and Find Full Text PDFUnderstanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers.
View Article and Find Full Text PDFUnderstanding tumor microenvironment (TME) reprogramming in gastric adenocarcinoma (GAC) progression may uncover novel therapeutic targets. Here, we performed single-cell profiling of precancerous lesions, localized and metastatic GACs, identifying alterations in TME cell states and compositions as GAC progresses. Abundant IgA plasma cells exist in the premalignant microenvironment, whereas immunosuppressive myeloid and stromal subsets dominate late-stage GACs.
View Article and Find Full Text PDFTumor-infiltrating T cells offer a promising avenue for cancer treatment, yet their states remain to be fully characterized. Here we present a single-cell atlas of T cells from 308,048 transcriptomes across 16 cancer types, uncovering previously undescribed T cell states and heterogeneous subpopulations of follicular helper, regulatory and proliferative T cells. We identified a unique stress response state, T, characterized by heat shock gene expression.
View Article and Find Full Text PDFBackground: Chimeric antigen receptor (CAR) T-cell therapy using brexucabtagene autoleucel (BA) induces remission in many patients with mantle cell lymphoma (MCL), and BA is the only CAR T-cell therapy approved by the FDA for MCL. However, development of relapses to BA is recognized with poor patient outcomes. Multiple CAR T-cell therapies have been approved for other lymphomas and the resistance mechanisms have been investigated.
View Article and Find Full Text PDFUnlabelled: Tumor-infiltrating B and plasma cells (TIB) are prevalent in lung adenocarcinoma (LUAD); however, they are poorly characterized. We performed paired single-cell RNA and B-cell receptor (BCR) sequencing of 16 early-stage LUADs and 47 matching multiregion normal tissues. By integrative analysis of ∼50,000 TIBs, we define 12 TIB subsets in the LUAD and adjacent normal ecosystems and demonstrate extensive remodeling of TIBs in LUADs.
View Article and Find Full Text PDFImmune checkpoint therapy (ICT) provides substantial clinical benefits to cancer patients, but a large proportion of cancers do not respond to ICT. To date, the genomic underpinnings of primary resistance to ICT remain elusive. Here, we performed immunogenomic analysis of data from TCGA and clinical trials of anti-PD-1/PD-L1 therapy, with a particular focus on homozygous deletion of 9p21.
View Article and Find Full Text PDFThe mechanisms driving therapeutic resistance and poor outcomes of mantle cell lymphoma (MCL) are incompletely understood. We characterize the cellular and molecular heterogeneity within and across patients and delineate the dynamic evolution of tumor and immune cell compartments at single cell resolution in longitudinal specimens from ibrutinib-sensitive patients and non-responders. Temporal activation of multiple cancer hallmark pathways and acquisition of 17q are observed in a refractory MCL.
View Article and Find Full Text PDFAutologous chimeric antigen receptor (CAR) T cell therapies targeting CD19 have high efficacy in large B cell lymphomas (LBCLs), but long-term remissions are observed in less than half of patients, and treatment-associated adverse events, such as immune effector cell-associated neurotoxicity syndrome (ICANS), are a clinical challenge. We performed single-cell RNA sequencing with capture-based cell identification on autologous axicabtagene ciloleucel (axi-cel) anti-CD19 CAR T cell infusion products to identify transcriptomic features associated with efficacy and toxicity in 24 patients with LBCL. Patients who achieved a complete response by positron emission tomography/computed tomography at their 3-month follow-up had three-fold higher frequencies of CD8 T cells expressing memory signatures than patients with partial response or progressive disease.
View Article and Find Full Text PDFThe emergence and spread of drug-resistant Mycobacterium tuberculosis is of global concern. To improve the understanding of drug resistance in Mycobacteria, numerous studies have been performed to discover diagnostic markers and genetic determinants associated with resistance to anti-tuberculosis drug. However, the related information is scattered in a massive body of literature, which is inconvenient for researchers to investigate the molecular mechanism of drug resistance.
View Article and Find Full Text PDFDrug repositioning has become a prevailing tactic as this strategy is efficient, economical and low risk for drug discovery. Meanwhile, recent studies have confirmed that small-molecule drugs can modulate the expression of disease-related miRNAs, which indicates that miRNAs are promising therapeutic targets for complex diseases. In this study, we put forward and verified the hypothesis that drugs with similar miRNA profiles may share similar therapeutic properties.
View Article and Find Full Text PDFSelecting the available treatment for each cancer patient from genomic context is a core goal of precision medicine, but innovative approaches with mechanism interpretation and improved performance are still highly needed. Through utilizing in vitro chemotherapy response data coupled with gene and miRNA expression profiles, we applied a network-based approach that identified markers not as individual molecules but as functional groups extracted from the integrated transcription factor and miRNA regulatory network. Based on the identified chemoresponse communities, the predictors of drug resistance achieved high accuracy in cross-validation and were more robust and reproducible than conventional single-molecule markers.
View Article and Find Full Text PDFPathway enrichment analysis has been widely used to identify cancer risk pathways, and contributes to elucidating the mechanism of tumorigenesis. However, most of the existing approaches use the outdated pathway information and neglect the complex gene interactions in pathway. Here, we first reviewed the existing widely used pathway enrichment analysis approaches briefly, and then, we proposed a novel topology-based pathway enrichment analysis (TPEA) method, which integrated topological properties and global upstream/downstream positions of genes in pathways.
View Article and Find Full Text PDFSummary: As a promising field of individualized therapy, non-coding RNA pharmacogenomics promotes the understanding of different individual responses to certain drugs and acts as a reasonable reference for clinical treatment. However, relevant information is scattered across the published literature, which is inconvenient for researchers to explore non-coding RNAs that are involved in drug resistance. To address this, we systemically identified validated and predicted drug resistance-associated microRNAs and long non-coding RNAs through manual curation and computational analysis.
View Article and Find Full Text PDFAdverse drug reactions (ADRs) are responsible for drug failure in clinical trials and affect life quality of patients. The identification of ADRs during the early phases of drug development is an important task. Therefore, predicting potential protein targets eliciting ADRs is essential for understanding the pathogenesis of ADRs.
View Article and Find Full Text PDFMicroRNAs (miRNAs) are a class of small non-coding RNA molecules that regulate gene expression at post-transcriptional level. Increasing evidences show aberrant expression of miRNAs in varieties of diseases. Targeting the dysregulated miRNAs with small molecule drugs has become a novel therapy for many human diseases, especially cancer.
View Article and Find Full Text PDFBackground: Breast cancer is the most common incident form of cancer in women including different subtypes. Cancer stem cells (CSCs) have been confirmed to exist in breast cancer. But the research on the origin of breast cancer subtype stem cells (BCSSCs) is still inadequate.
View Article and Find Full Text PDF