Currently, the relationship between axial rotation of the vertebrae and bone mineral density (BMD) measured by dual-energy X-ray absorptiometry (DXA) and quantitative computed tomography (QCT) remains controversial. The aim of this study is to quantitatively assess the effect of vertebral rotation on volumetric bone mineral density (v-BMD) and areal bone mineral density (a-BMD), further to propose the corrected strategies. To achieve this, a phantom, which was rotated from 0° to 25° in 5° increments, was utilized.
View Article and Find Full Text PDFThe morphologies and structures of nanostructured carbons generally influence their catalysis, electrochemical performance and adsorption properties. Metal-organic framework (MOF) nanocrystals usually have various morphologies, and can be considered as a template to construct nanostructured carbons with shaped nanocubes, nanorods, and hollow particles by thermal transformation. However, thermal carbonization of MOFs usually leads to collapse of MOF structures.
View Article and Find Full Text PDF