Publications by authors named "Emrys Jones"

Newer and safer agrochemicals are always in demand to meet the increasing needs of a growing population for affordable food. Spatial chemical monitoring of the active mobility of an agrochemical is essential to this agrochemical development process and mass spectrometry imaging (MSI) is proposed as a safer, easier alternative to the existing standard of autoradiography for the same. With desorption electrospray ionisation mass spectrometry imaging (DESI MSI) using leaf imprints, we were able to visualize the active agrochemical mobility of a commercial fungicide formulation with the active ingredient Azoxystrobin in whole tomato leaves.

View Article and Find Full Text PDF

Desorption electrospray ionization (DESI) is an ambient technique that allows chemical information to be obtained directly from a wide range of surfaces, without pretreatment. Here we describe the improvements that have been developed to be able to achieve low tens of microns pixel size MSI experiments with high sensitivity for metabolites and lipids from biological tissue sections.In the last decade, DESI mass spectrometry has undergone developmental improvements, with regard to the method of desorption and ionization as well as the mass spectrometer to which the DESI source has been coupled to.

View Article and Find Full Text PDF

A novel mass spectrometry system is described here comprising a quadrupole-multireflecting time-of-flight design. The new multireflecting time-of-flight analyzer has an effective path length of 48 m and employs planar, gridless ion mirrors providing fourth-order energy focusing resulting in resolving power over 200 000 fwhm and sub-ppm mass accuracy. We show how these attributes are maintained with relatively fast acquisition speeds, setting the system apart from other high resolution mass spectrometers.

View Article and Find Full Text PDF

In this study, we examine the suitability of desorption electro-flow focusing ionization (DEFFI) for mass spectrometry imaging (MSI) of biological tissue. We also compare the performance of desorption electrospray ionization (DESI) with and without the flow focusing setup. The main potential advantages of applying the flow focusing mechanism in DESI is its rotationally symmetric electrospray jet, higher intensity, more controllable parameters, and better portability due to the robustness of the sprayer.

View Article and Find Full Text PDF

Aim: To explore the lived experience of delivering or receiving news about an unborn or newborn child having a condition associated with a learning disability in order to inform the development of a training intervention for healthcare professionals. We refer to this news as different news.

Background: How healthcare professionals deliver different news to parents affects the way they adjust to the situation, the wellbeing of their child and their ongoing engagement with services.

View Article and Find Full Text PDF

Desorption electrospray ionisation mass spectrometry (DESI-MS) can image hundreds of molecules in a 2D tissue section, making it an ideal tool for mapping tumour heterogeneity. Tumour lipid metabolism has gained increasing attention over the past decade; and here, lipid heterogeneity has been visualised in a glioblastoma xenograft tumour using 3D DESI-MS imaging. The use of an automatic slide loader automates 3D imaging for high sample-throughput.

View Article and Find Full Text PDF

The incidence of esophageal adenocarcinoma is rising, survival remains poor, and new tools to improve early diagnosis and precise treatment are needed. Cancer phospholipidomes quantified with mass spectrometry imaging (MSI) can support objective diagnosis in minutes using a routine frozen tissue section. However, whether MSI can objectively identify primary esophageal adenocarcinoma is currently unknown and represents a significant challenge, as this microenvironment is complex with phenotypically similar tissue-types.

View Article and Find Full Text PDF

Background: In the United Kingdom, pregnant women are offered foetal anomaly screening to assess the chance of their baby being born with eleven different conditions. How health care professionals (HCPs) deliver news about a child having a congenital anomaly affects how it is received and processed by parents. We refer to this news as different news.

View Article and Find Full Text PDF

Background: We describe a new approach to the recovery of information from faecal samples, based on the analysis of the molecular signature generated by rapid evaporative ionisation mass spectrometry (REIMS).

Results: Faecal pellets from five different rodent species were analysed by REIMS, and complex mass spectra were acquired rapidly (typically a few seconds per sample). The uninterpreted mass spectra (signatures) were then used to seed linear discriminant analysis and classification models based on random forests.

View Article and Find Full Text PDF

Rapid evaporative ionization mass spectrometry (REIMS) is a highly versatile technique allowing the sampling of a range of biological solid or liquid samples with no sample preparation. The cost of such a direct approach is that certain sample types provide only moderate amounts of chemical information. Here, we introduce a matrix assisted version of the technique (MA-REIMS), where an aerosol of a pure solvent, such as isopropanol, is mixed with the sample aerosol generated by rapid evaporation of the sample, and it is shown to enhance the signal intensity obtained from a REIMS sampling event by over 2 orders of magnitude.

View Article and Find Full Text PDF

Alterations in lipid metabolism in cancer cells impact cell structure, signaling, and energy metabolism, making lipid metabolism a potential diagnostic marker and therapeutic target. In this study, we combined PET, desorption electrospray ionization-mass spectrometry (DESI-MS), nonimaging MS, and transcriptomic analyses to interrogate changes in lipid metabolism in a transgenic zebrafish model of oncogenic RAS-driven melanocyte neoplasia progression. Exogenous fatty acid uptake was detected in melanoma tumor nodules by PET using the palmitic acid surrogate tracer 14(R,S)-18F-fluoro-6-thia-heptadecanoic acid ([18F]-FTHA), consistent with upregulation of genes associated with fatty acid uptake found through microarray analysis.

View Article and Find Full Text PDF

Mass spectrometry imaging (MSI) has proven to be a valuable tool for drug and metabolite imaging in pharmaceutical toxicology studies and can reveal, for example, accumulation of drug candidates in early drug development. However, the lack of sample cleanup and chromatographic separation can hamper the analysis due to isobaric interferences. Multiple reaction monitoring (MRM) uses unique precursor ion-product ion transitions to add specificity which leads to higher selectivity.

View Article and Find Full Text PDF

Desorption electrospray ionisation mass spectrometry imaging (DESI-MSI) is typically known for the ionisation of small molecules such as lipids and metabolites, in singly charged form. Here we present a method that allows the direct detection of proteins and peptides in multiply charged forms directly from tissue sections by DESI. Utilising a heated mass spectrometer inlet capillary, combined with ion mobility separation (IMS), the conditions with regard to solvent composition, nebulising gas flow, and solvent flow rate have been explored and optimised.

View Article and Find Full Text PDF

Healthy skin depends on a unique lipid profile to form a barrier that confers protection and prevents excessive water loss, aids cell-cell communication and regulates cutaneous homoeostasis and inflammation. Alterations in the cutaneous lipid profile can have severe consequences for skin health and have been implicated in numerous inflammatory skin conditions. Thus, skin lipidomics is increasingly of interest, and recent developments in mass spectrometry-based analytical technologies can deliver in-depth investigation of cutaneous lipids, providing insight into their role and mechanism of action.

View Article and Find Full Text PDF

A new, more robust sprayer for desorption electrospray ionization (DESI) mass spectrometry imaging is presented. The main source of variability in DESI is thought to be the uncontrolled variability of various geometric parameters of the sprayer, primarily the position of the solvent capillary, or more specifically, its positioning within the gas capillary or nozzle. If the solvent capillary is off-center, the sprayer becomes asymmetrical, making the geometry difficult to control and compromising reproducibility.

View Article and Find Full Text PDF

Desorption Electrospray Ionization (DESI) mass spectrometry is a technique that allows chemical information to be obtained directly from a wide range of surfaces. Using a 2D stage, DESI can be implemented in an imaging mode whereby MS spectra are collected by rastering the spray across the whole surface. Here, we describe the implementation and optimization of DESI imaging for metabolites and lipids from tissue sections using oa-TOF mass spectrometers.

View Article and Find Full Text PDF

Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry imaging (MSI) can simultaneously measure hundreds of biomolecules directly from tissue. Using different sample preparation strategies, proteins and metabolites have been profiled to study the molecular changes in a 3×Tg mouse model of Alzheimer's disease. In comparison with wild-type (WT) control mice MALDI-MSI revealed Alzheimer's disease-specific protein profiles, highlighting dramatic reductions of a protein with m/z 7560, which was assigned to neurogranin and validated by immunohistochemistry.

View Article and Find Full Text PDF

Screening of bacterial colonies to identify new biocatalytic activities is a widely adopted tool in biotechnology, but is constrained by the requirements for colorimetric or tag-based detection methods. Herein we report a label-free screening platform for biotransformations in live colonies using desorption electrospray ionization coupled with ion mobility mass spectrometry imaging (DiBT-IMMS). The screening method is demonstrated for both ammonia lyases and P450 monooxygenases expressed within live bacterial colonies and is shown to enable multiplexing of enzyme variants and substrate libraries simultaneously.

View Article and Find Full Text PDF

Histopathological assessment of lymph node metastases (LNM) depends on subjective analysis of cellular morphology with inter-/intraobserver variability. In this study, LNM from esophageal adenocarcinoma was objectively detected using desorption electrospray ionization-mass spectrometry imaging (DESI-MSI). Ninety lymph nodes (LN) and their primary tumor biopsies from 11 esophago-gastrectomy specimens were examined and analyzed by DESI-MSI.

View Article and Find Full Text PDF

In most cases, food packaging materials contain inks whose components can migrate to food by diffusion through the material as well as by set-off phenomena. In this work, different mass spectrometry approaches had been used in order to identify and confirm the presence of ink components in ethanol (95%) and Tenax(®) as food simulants. Three different sets of materials, manufactured with different printing technologies and with different structures, were analyzed.

View Article and Find Full Text PDF

In this study, the impact of sprayer design and geometry on performance in desorption electrospray ionization mass spectrometry (DESI-MS) is assessed, as the sprayer is thought to be a major source of variability. Absolute intensity repeatability, spectral composition, and classification accuracy for biological tissues are considered. Marked differences in tissue analysis performance are seen between the commercially available and a lab-built sprayer.

View Article and Find Full Text PDF

The increased interest in lipidomics calls for improved yet simplified methods of lipid analysis. Over the past two decades, mass spectrometry imaging (MSI) has been established as a powerful technique for the analysis of molecular distribution of a variety of compounds across tissue surfaces. Matrix-assisted laser desorption/ionization (MALDI) MSI is widely used to study the spatial distribution of common lipids.

View Article and Find Full Text PDF

In this study, we make a direct comparison between desorption electrospray ionization-mass spectrometry (DESI-MS) and ultraperformance liquid chromatography-electrospray ionization-mass spectrometry (UPLC-ESI-MS) platforms for the profiling of glycerophospholipid (GPL) species in esophageal cancer tissue. In particular, we studied the similarities and differences in the range of GPLs detected and the congruency of their relative abundances as detected by each analytical platform. The main differences between mass spectra of the two modalities were found to be associated with the variance in adduct formation of common GPLs, rather than the presence of different GPL species.

View Article and Find Full Text PDF

Breast cancer is a heterogeneous disease characterized by varying responses to therapeutic agents and significant differences in long-term survival. Thus, there remains an unmet need for early diagnostic and prognostic tools and improved histologic characterization for more accurate disease stratification and personalized therapeutic intervention. This study evaluated a comprehensive metabolic phenotyping method in breast cancer tissue that uses desorption electrospray ionization mass spectrometry imaging (DESI MSI), both as a novel diagnostic tool and as a method to further characterize metabolic changes in breast cancer tissue and the tumor microenvironment.

View Article and Find Full Text PDF

Rapid evaporative ionization mass spectrometry (REIMS) technology allows real time intraoperative tissue classification and the characterization and identification of microorganisms. In order to create spectral libraries for training the classification models, reference data need to be acquired in large quantities as classification accuracy generally improves as a function of number of training samples. In this study, we present an automated high-throughput method for collecting REIMS data from heterogeneous organic tissue.

View Article and Find Full Text PDF