Social influence is a strong determinant of food consumption, which in turn influences the environment and health. Purchasing mimicry, a phenomenon where a person copies another person's purchases, has been identified as the key governing mechanism. Although consistent observations have been made on the role of purchasing mimicry in driving similarities in food consumption, much less is known about the precise prevalence, the affected subpopulations, and the food types most strongly associated with mimicry effects.
View Article and Find Full Text PDFAlthough diets influence health and the environment, measuring and changing nutrition is challenging. Traditional measurement methods face challenges, and designing and conducting behavior-changing interventions is conceptually and logistically complicated. Situated local communities such as university campuses offer unique opportunities to shape the nutritional environment and promote health and sustainability.
View Article and Find Full Text PDFJ Clin Transl Sci
December 2023
Objective: The United States Congress passed the 21st Century Cures Act mandating the development of Food and Drug Administration guidance on regulatory use of real-world evidence. The Forum on the Integration of Observational and Randomized Data conducted a meeting with various stakeholder groups to build consensus around best practices for the use of real-world data (RWD) to support regulatory science. Our companion paper describes in detail the context and discussion of the meeting, which includes a recommendation to use a causal roadmap for study designs using RWD.
View Article and Find Full Text PDFIncreasing emphasis on the use of real-world evidence (RWE) to support clinical policy and regulatory decision-making has led to a proliferation of guidance, advice, and frameworks from regulatory agencies, academia, professional societies, and industry. A broad spectrum of studies use real-world data (RWD) to produce RWE, ranging from randomized trials with outcomes assessed using RWD to fully observational studies. Yet, many proposals for generating RWE lack sufficient detail, and many analyses of RWD suffer from implausible assumptions, other methodological flaws, or inappropriate interpretations.
View Article and Find Full Text PDFIn classical causal inference, inferring cause-effect relations from data relies on the assumption that units are independent and identically distributed. This assumption is violated in settings where units are related through a network of dependencies. An example of such a setting is ad placement in sponsored search advertising, where the likelihood of a user clicking on a particular ad is potentially influenced by where it is placed and where other ads are placed on the search result page.
View Article and Find Full Text PDFIt has been the historic responsibility of the social sciences to investigate human societies. Fulfilling this responsibility requires social theories, measurement models and social data. Most existing theories and measurement models in the social sciences were not developed with the deep societal reach of algorithms in mind.
View Article and Find Full Text PDFBackground: Antidepressants are known to show heterogeneous effects across individuals and conditions, posing challenges to understanding their efficacy in mental health treatment. Social media platforms enable individuals to share their day-to-day concerns with others and thereby can function as unobtrusive, large-scale, and naturalistic data sources to study the longitudinal behavior of individuals taking antidepressants.
Objective: We aim to understand the side effects of antidepressants from naturalistic expressions of individuals on social media.
Proc Int AAAI Conf Weblogs Soc Media
June 2019
Understanding the effects of psychiatric medications during mental health treatment constitutes an active area of inquiry. While clinical trials help evaluate the effects of these medications, many trials suffer from a lack of generalizability to broader populations. We leverage social media data to examine psychopathological effects subject to self-reported usage of psychiatric medication.
View Article and Find Full Text PDFSocial data in digital form-including user-generated content, expressed or implicit relations between people, and behavioral traces-are at the core of popular applications and platforms, driving the research agenda of many researchers. The promises of social data are many, including understanding "what the world thinks" about a social issue, brand, celebrity, or other entity, as well as enabling better decision-making in a variety of fields including public policy, healthcare, and economics. Many academics and practitioners have warned against the naïve usage of social data.
View Article and Find Full Text PDFDaily rhythms in human physiology and behavior are driven by the interplay of circadian rhythms, environmental cycles, and social schedules. Much research has focused on the mechanism and function of circadian rhythms in constant conditions or in idealized light-dark environments. There have been comparatively few studies into how social pressures, such as work and school schedules, affect human activity rhythms day to day and season to season.
View Article and Find Full Text PDFUsing several longitudinal datasets describing putative factors affecting influenza incidence and clinical data on the disease and health status of over 150 million human subjects observed over a decade, we investigated the source and the mechanistic triggers of influenza epidemics. We conclude that the initiation of a pan-continental influenza wave emerges from the simultaneous realization of a complex set of conditions. The strongest predictor groups are as follows, ranked by importance: (1) the host population's socio- and ethno-demographic properties; (2) weather variables pertaining to specific humidity, temperature, and solar radiation; (3) the virus' antigenic drift over time; (4) the host population'€™s land-based travel habits, and; (5) recent spatio-temporal dynamics, as reflected in the influenza wave auto-correlation.
View Article and Find Full Text PDFThere is a large body of research on utilizing online activity as a survey of political opinion to predict real world election outcomes. There is considerably less work, however, on using this data to understand topic-specific interest and opinion amongst the general population and specific demographic subgroups, as currently measured by relatively expensive surveys. Here we investigate this possibility by studying a full census of all Twitter activity during the 2012 election cycle along with the comprehensive search history of a large panel of Internet users during the same period, highlighting the challenges in interpreting online and social media activity as the results of a survey.
View Article and Find Full Text PDFIEEE Trans Neural Netw
September 2005
Most Internet services (e-commerce, search engines, etc.) suffer faults. Quickly detecting these faults can be the largest bottleneck in improving availability of the system.
View Article and Find Full Text PDF