Publications by authors named "Emrah Sariyer"

Multidrug-resistant is a serious threat pathogen rapidly spreading in clinics and causing a range of complicated human infections. The major contributor to antibiotic resistance is the overproduction of AdeIJK and AdeABC multidrug efflux pumps of the resistance-nodulation-division (RND) superfamily of proteins. The dominant role of efflux in antibiotic resistance and the relatively high permeability of the outer membrane to amphiphilic compounds make this pathogen a promising target for the discovery of clinically relevant efflux pump inhibitors.

View Article and Find Full Text PDF

Obesity, which is already pervasive throughout the world, endangers public health by raising the prevalence of metabolic disorders and making their treatment more difficult. The development of drugs to treat obesity is a focus of effort. Melanin concentrated hormone receptor 1 (MCHR1) is the target of some of these therapeutic possibilities since as increased levels of melanin concentrated hormone have been found in obesity models.

View Article and Find Full Text PDF

The gram-negative strain Acinetobacter baumannii is a cocobacillus, non-motile and aerobic organism that is often found in nosocomial infections. Many institutions worldwide such as WHO are grappling with antibiotic resistance A. baumannii.

View Article and Find Full Text PDF

Bacteriodes fragilis is an anaerobic bacterium found in the human intestinal flora. In this study, BfEno was targeted with a structure-based drug design approach because inhibition of this enzyme may prevent both the aerobic and anaerobic pathways due to its role in the glycolytic pathway. First, the gene encoding BfEno was cloned, expressed and the protein produced over 95% purity.

View Article and Find Full Text PDF

Antimicrobial resistance (AMR) threatens millions of people around the world and has been declared a global risk by the World Economic Forum. One of the important AMR mechanisms in Enterobacteriaceae is the production of extended-spectrum β-lactamases. The most common ESBL, CTX-M β-lactamases, is spread to the world by CTX-M-15 and CTX-M-14.

View Article and Find Full Text PDF

Tropical theileriosis is among the most common vector-borne diseases and caused by Theileria parasites. Theileria annulata is an obligate intracellular protozoan parasite and transmitted to especially Bos taurus and Bos indicus by Hyalomma tick vectors. C8 ([4-(3,4-dimethoxyphenyl)-6,7-dihydroxy-2H-chromen-2-one); C9 (4-(3,4-dihydroxyphenyl)-7,8 dihydroxy-2H-chromen-2-one); C21 (4-(3,4-dihydroxyphenyl)-6,7-dihydroxy-2H-chromen-2 one) were identified as potent Theileria annulata enolase (TaEno) inhibitors in our previous studies.

View Article and Find Full Text PDF

Theileria annulata secretes peptidyl prolyl isomerase enzyme (TaPIN1) to manipulate the host cell oncogenic signaling pathway by disrupting the tumor suppressor F-box and WD repeat domain-containing 7 (FBW7) protein level leading to an increased level of c-Jun proto-oncogene. Buparvaquone is a hydroxynaphthoquinone anti-theilerial drug and has been used to treat theileriosis. However, TaPIN1 contains the A53 P mutation that causes drug resistance.

View Article and Find Full Text PDF

SARS-CoV-2 has caused COVID-19 outbreak with nearly 2 M infected people and over 100K death worldwide, until middle of April 2020. There is no confirmed drug for the treatment of COVID-19 yet. As the disease spread fast and threaten human life, repositioning of FDA approved drugs may provide fast options for treatment.

View Article and Find Full Text PDF

In this study, the Nsp12-Nsp8 complex of SARS-CoV-2 was targeted with structure-based and computer-aided drug design approach because of its vital role in viral replication. Sequence analysis of RNA-dependent RNA polymerase (Nsp12) sequences from 30,366 different isolates were analysed for possible mutations. FDA-approved and investigational drugs were screened for interaction with both mutant and wild-type Nsp12-Nsp8 interfaces.

View Article and Find Full Text PDF

In this study, the inhibition potential of 3- and 4-arylcoumarin derivatives on Theileria annulata enolase (TaENO) was assessed for the first time in the literature. Firstly, protein stabilization analyses of TaENO were performed and it was found that the enzyme remains stable with the addition of 6 M ethylene glycol at + 4 °C. Inhibitor screening analyses were carried out using 25 coumarin derivatives on highly purified TaENO (> 95%), and four coumarin derivatives [4-(3,4-dimethoxyphenyl)-6,7-dihydroxy-2H-chromen-2-one (C8); 4-(3,4-dihydroxyphenyl)-7,8 dihydroxy-2H-chromen-2-one (C9); 4-(3,4-dihydroxyphenyl)-6,7-dihydroxy-2H-chromen-2 one (C21); and 3-(3,4-dihydroxyphenyl)-7,8-dihydroxy-2H-chromen-2-one (C23)] showed the highest inhibitory effects with the IC values of 10.

View Article and Find Full Text PDF

Tropical theileriosis caused by Theileria annulata obligate parasite that infect ruminant animals, including Bos taurus. The disease results massive economic losses in livestock production worldwide. Here we describe cloning, expression and both biochemical and structural characterization of beta enolase from Bos taurus in vitro and in silico.

View Article and Find Full Text PDF

Theileria annulata is an apicomplexan parasite which is responsible for tropical theileriosis in cattle. Due to resistance of T. annulata against commonly used antitheilerial drug, new drug candidates should be identified urgently.

View Article and Find Full Text PDF