Unlabelled: Celiac disease (CD) is an autoimmune disease caused by a loss of gluten tolerance in genetically predisposed individuals. While 30%-40% of people possess the predisposing alleles, only 1%-2% are diagnosed with CD, suggesting that environmental factors are involved in disease pathogenesis. To determine an association between pediatric CD and the gut microbiome, we analyzed fecal samples from a prospective cohort study (ABIS).
View Article and Find Full Text PDFNumerous studies have reported altered cytokine levels in type 1 diabetes (T1D) patients, yet findings remain inconsistent. In this pilot study, we tested the hypothesis that circulating immune markers exhibit sex-based differences in T1D, both prior to and after disease onset. We analyzed 47-48 cytokine, chemokine, and growth factor levels in two cohorts.
View Article and Find Full Text PDFWhile studies have reported altered levels of cytokines in type 1 diabetes (T1D) patients, the results are inconsistent, likely because of variable factors. This study tests the hypothesis that there are sex-based differences in cytokine levels in T1D, prior to and after disease onset. We analyzed 48 blood cytokine, chemokine, and growth factor levels using a multiplex assay.
View Article and Find Full Text PDFObjective: The insulin/IGF superfamily is conserved across vertebrates and invertebrates. Our team has identified five viruses containing genes encoding viral insulin/IGF-1 like peptides (VILPs) closely resembling human insulin and IGF-1. This study aims to characterize the impact of Mandarin fish ranavirus (MFRV) and Lymphocystis disease virus-Sa (LCDV-Sa) VILPs on the insulin/IGF system for the first time.
View Article and Find Full Text PDFBackground: Celiac disease (CD) is an autoimmune disorder triggered by gluten consumption. Almost all CD patients possess human leukocyte antigen (HLA) DQ2/DQ8 haplotypes; however, only a small subset of individuals carrying these alleles develop CD, indicating the role of environmental factors in CD pathogenesis. The main objective of this study was to determine the contributory role of gut microbiota and microbial metabolites in CD onset.
View Article and Find Full Text PDFLymphocystis disease virus-1 (LCDV-1) and several other Iridoviridae encode viral insulin/IGF-1 like peptides (VILPs) with high homology to human insulin and IGFs. Here we show that while single-chain (sc) and double-chain (dc) LCDV1-VILPs have very low affinity for the insulin receptor, scLCDV1-VILP has high affinity for IGF1R where it can antagonize human IGF-1 signaling, without altering insulin signaling. Consequently, scLCDV1-VILP inhibits IGF-1 induced cell proliferation and growth hormone/IGF-1 induced growth of mice in vivo.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2022
Type 1 diabetes (T1D) is an autoimmune disease characterized by the destruction of pancreatic β-cells. One of the earliest aspects of this process is the development of autoantibodies and T cells directed at an epitope in the B-chain of insulin (insB:9-23). Analysis of microbial protein sequences with homology to the insB:9-23 sequence revealed 17 peptides showing >50% identity to insB:9-23.
View Article and Find Full Text PDFGrowing evidence indicates an important link between gut microbiota, obesity, and metabolic syndrome. Alterations in exocrine pancreatic function are also widely present in patients with diabetes and obesity. To examine this interaction, C57BL/6J mice were fed a chow diet, a high-fat diet (HFD), or an HFD plus oral vancomycin or metronidazole to modify the gut microbiome.
View Article and Find Full Text PDFExosomes/small extracellular vesicles (sEVs) can serve as multifactorial mediators of cell-to-cell communication through their miRNA and protein cargo. Quantitative proteomic analysis of five cell lines representing metabolically important tissues reveals that each cell type has a unique sEV proteome. While classical sEV markers such as CD9/CD63/CD81 vary markedly in abundance, we identify six sEV markers (ENO1, GPI, HSPA5, YWHAB, CSF1R, and CNTN1) that are similarly abundant in sEVs of all cell types.
View Article and Find Full Text PDFOver the past decades, there have been tremendous efforts to understand the cross-talk between viruses and host metabolism. Several studies have elucidated the mechanisms through which viral infections manipulate metabolic pathways including glucose, fatty acid, protein, and nucleotide metabolism. These pathways are evolutionarily conserved across the tree of life and extremely important for the host's nutrient utilization and energy production.
View Article and Find Full Text PDFObjective: Natural sources of molecular diversity remain of utmost importance as a reservoir of proteins and peptides with unique biological functions. We recently identified such a family of viral insulin-like peptides (VILPs). We sought to advance the chemical methods in synthesis to explore the structure-function relationship within these VILPs, and the molecular basis for differential biological activities relative to human IGF-1 and insulin.
View Article and Find Full Text PDFFront Endocrinol (Lausanne)
March 2021
Type 1 Diabetes (T1D) is regarded as an autoimmune disease characterized by insulin deficiency resulting from destruction of pancreatic β-cells. The incidence rates of T1D have increased worldwide. Over the past decades, progress has been made in understanding the complexity of the immune response and its role in T1D pathogenesis, however, the trigger of T1D autoimmunity remains unclear.
View Article and Find Full Text PDFViruses have developed different mechanisms to manipulate their hosts, including the process of viral mimicry in which viruses express important host proteins. Until recently, examples of viral mimicry were limited to mimics of growth factors and immunomodulatory proteins. Using a comprehensive bioinformatics approach, we have shown that viruses possess the DNA/RNA with potential to encode 16 different peptides with high sequence similarity to human peptide hormones and metabolically important regulatory proteins.
View Article and Find Full Text PDFDiet, genetics, and the gut microbiome are determinants of metabolic status, in part through production of metabolites by the gut microbiota. To understand the mechanisms linking these factors, we performed LC-MS-based metabolomic analysis of cecal contents and plasma from C57BL/6J, 129S1/SvImJ, and 129S6/SvEvTac mice on chow or a high-fat diet (HFD) and HFD-treated with vancomycin or metronidazole. Prediction of the functional metagenome of gut bacteria by PICRUSt analysis of 16S sequences revealed dramatic differences in microbial metabolism.
View Article and Find Full Text PDFViruses are the most abundant biological entities and carry a wide variety of genetic material, including the ability to encode host-like proteins. Here we show that viruses carry sequences with significant homology to several human peptide hormones including insulin, insulin-like growth factors (IGF)-1 and -2, FGF-19 and -21, endothelin-1, inhibin, adiponectin, and resistin. Among the strongest homologies were those for four viral insulin/IGF-1-like peptides (VILPs), each encoded by a different member of the family VILPs show up to 50% homology to human insulin/IGF-1, contain all critical cysteine residues, and are predicted to form similar 3D structures.
View Article and Find Full Text PDFInteractions of diet, gut microbiota, and host genetics play important roles in the development of obesity and insulin resistance. Here, we have investigated the molecular links between gut microbiota, insulin resistance, and glucose metabolism in 3 inbred mouse strains with differing susceptibilities to metabolic syndrome using diet and antibiotic treatment. Antibiotic treatment altered intestinal microbiota, decreased tissue inflammation, improved insulin signaling in basal and stimulated states, and improved glucose metabolism in obesity- and diabetes-prone C57BL/6J mice on a high-fat diet (HFD).
View Article and Find Full Text PDFUnlabelled: The type VI secretion system (T6SS) is a dynamic macromolecular organelle that many Gram-negative bacteria use to inhibit or kill other prokaryotic or eukaryotic cells. The toxic effectors of T6SS are delivered to the prey cells in a contact-dependent manner. In Vibrio cholerae, the etiologic agent of cholera, T6SS is active during intestinal infection.
View Article and Find Full Text PDFNew generation vaccines are in demand to include only the key antigens sufficient to confer protective immunity among the plethora of pathogen molecules. In the last decade, large-scale genomics-based technologies have emerged. Among them, the Reverse Vaccinology approach was successfully applied to the development of an innovative vaccine against Neisseria meningitidis serogroup B, now available on the market with the commercial name BEXSERO® (Novartis Vaccines).
View Article and Find Full Text PDFOuter membrane vesicles (OMVs) produced by Gram-negative bacteria provide an interesting research material for defining cell-envelope proteins without experimental cell disruption. OMVs are also promising immunogenic platforms and may play important roles in bacterial survival and pathogenesis. We used in-solution trypsin digestion coupled to mass spectrometry to identify 90 proteins present in OMVs of Vibrio cholerae when grown under conditions that activate the TCP pilus virulence regulatory protein (ToxT) virulence regulon.
View Article and Find Full Text PDFCurr Top Med Chem
June 2014
Vaccination is one of the safest and most cost-effective public health interventions, which save millions of lives annually. Thanks to all the genius pioneers of the field, we have already developed many effective vaccines. On the other hand, there are still many pathogens for which we do not yet have an effective or optimal vaccine, including malaria, HIV, and tuberculosis.
View Article and Find Full Text PDFIron availability plays an essential role in staphylococcal pathogenesis. We selected FhuD2, a lipoprotein involved in iron-hydroxamate uptake, as a novel vaccine candidate against Staphylococcus aureus. Unprecedented for staphylococcal lipoproteins, the protein was demonstrated to have a discrete, punctate localization on the bacterial surface.
View Article and Find Full Text PDF