Publications by authors named "Emond Vincent"

Dietary supplementation with n-3 polyunsaturated fatty acids improves cognitive performance in several animal models of Alzheimer's disease (AD), an effect often associated with reduced amyloid-beta and/or tau pathologies. However, it remains unclear to what extent eicosapentaenoic (EPA) provides additional benefits compared to docosahexaenoic acid (DHA). Here, male and female 3xTg-AD mice were fed for 3 months (13-16 months of age) the following diets: (1) control (no DHA/EPA), (2) DHA (1.

View Article and Find Full Text PDF

JOURNAL/nrgr/04.03/01300535-202502000-00033/figure1/v/2024-05-28T214302Z/r/image-tiff There is a need to develop interventions to slow or reverse the degeneration of dopamine neurons in Parkinson's disease after diagnosis. Given that preclinical and clinical studies suggest benefits of dietary n-3 polyunsaturated fatty acids, such as docosahexaenoic acid, and exercise in Parkinson's disease, we investigated whether both could synergistically interact to induce recovery of the dopaminergic pathway.

View Article and Find Full Text PDF
Article Synopsis
  • - This study examined ACE2 levels in the brains of people with Alzheimer's disease (AD), revealing that those with AD had significantly higher ACE2 protein and mRNA levels compared to healthy individuals.
  • - The research indicated that elevated brain ACE2 was linked to poorer cognitive scores and certain brain markers, while also showing a correlation with amyloid-β peptides and phospho-tau levels.
  • - Interestingly, the findings from mouse models didn't show similar ACE2 differences, suggesting that ACE2's role in AD might vary between species and its exact influence on COVID-19's effect in the brain is still uncertain.
View Article and Find Full Text PDF

Synaptic loss is intrinsically linked to Alzheimer's disease (AD) neuropathology and symptoms, but its direct impact on clinical symptoms remains elusive. The postsynaptic protein Shank3 (SH3 and multiple ankyrin repeat domains) is of particular interest, as the loss of a single allele of the gene is sufficient to cause profound cognitive symptoms in children. We thus sought to determine whether a SHANK3 deficiency could contribute to the emergence or worsening of AD symptoms and neuropathology.

View Article and Find Full Text PDF

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a major cause of death in the elderly. Cognitive decline due to Alzheimer's disease (AD) is frequent in the geriatric population disproportionately affected by the COVID-19 pandemic. Interestingly, central nervous system (CNS) manifestations have been reported in SARS-CoV-2-infected patients.

View Article and Find Full Text PDF

Central response to insulin is suspected to be defective in Alzheimer's disease. As most insulin is secreted in the bloodstream by the pancreas, its capacity to regulate brain functions must, at least partly, be mediated through the cerebral vasculature. However, how insulin interacts with the blood-brain barrier and whether alterations of this interaction could contribute to Alzheimer's disease pathophysiology both remain poorly defined.

View Article and Find Full Text PDF

The use of human derived induced pluripotent stem cells (hiPSCs) differentiated to dopaminergic (DA) neurons offers a valuable experimental model to decorticate the cellular and molecular mechanisms of Parkinson's disease (PD) pathogenesis. However, the existing approaches present with several limitations, notably the lengthy time course of the protocols and the high variability in the yield of DA neurons. Here we report on the development of an improved approach that combines neurogenin-2 programming with the use of commercially available midbrain differentiation kits for a rapid, efficient, and reproducible directed differentiation of hiPSCs to mature and functional induced DA (iDA) neurons, with minimum contamination by other brain cell types.

View Article and Find Full Text PDF

While the higher prevalence of Alzheimer's disease (AD) in women is clear, studies suggest that biological sex may also influence AD pathogenesis. However, mechanisms behind these differences are not clear. To investigate physiological differences between sexes at the cellular level in the brain, we investigated the intrinsic and synaptic properties of entorhinal cortex neurons in heterozygous 3xTg-AD mice of both sexes at the age of 20 months.

View Article and Find Full Text PDF

Introduction: High levels of plasmatic branched-chain amino acids (BCAA), commonly used as dietary supplements, are linked to metabolic risk factors for Alzheimer's disease (AD). BCAA directly influence amino acid transport to the brain and, therefore, neurotransmitter levels. We thus investigated the impact of BCAA on AD neuropathology in a mouse model.

View Article and Find Full Text PDF
Article Synopsis
  • The 3xTg-AD mouse model exhibits Alzheimer's disease-like symptoms, such as amyloid plaques and tau tangles, but lacks significant neuronal loss, suggesting it doesn't fully replicate Alzheimer's neuropathology.
  • By crossing 3xTg-AD mice with SAMP8 mice, a model of accelerated aging, the study found that older P8/3xTg-AD mice made significantly more errors in spatial memory tasks compared to other groups, indicating age-related cognitive decline.
  • Postmortem analysis revealed increased levels of harmful tau proteins and amyloid in P8/3xTg-AD females, alongside signs of astroglial activation, highlighting the negative impact of aging on Alzheimer's-related pathology without evident
View Article and Find Full Text PDF

Polyunsaturated fatty acids omega-3 (n-3 PUFA), such as docosahexaenoic acid (DHA), have been shown to prevent, and partially reverse, neurotoxin-induced nigrostriatal denervation in animal models of Parkinson's disease (PD). However, the accumulation of α-synuclein (αSyn) in cerebral tissues is equally important to the pathophysiology. To determine whether DHA intake improves various aspects related to synucleinopathy, ninety male mice overexpressing human αSyn under the Thy-1 promoter (Thy1-αSyn) were fed one of three diets (specially formulated control, low n-3 PUFA or high DHA) and compared to non-transgenic C57/BL6 littermate mice exposed to a control diet.

View Article and Find Full Text PDF

Receptors located on brain capillary endothelial cells forming the blood-brain barrier are the target of most brain drug delivery approaches. Yet, direct subcellular evidence of vectorized transport of nanoformulations into the brain is lacking. To resolve this question, quantum dots were conjugated to monoclonal antibodies (Ri7) targeting the murine transferrin receptor.

View Article and Find Full Text PDF

The reaction between an uncharged Li2FeSiO4 (LFS) cathode and a LiPF6-EC/DMC electrolyte is revealed by in situ XANES in coin cells. This study shows clear evidence of delithiation and iron oxidation in LFS prior to cycling. Subsequent cycling appears to partially restore the original lithiation level, an observation that needs to be taken into consideration in future LFS development work.

View Article and Find Full Text PDF

Defects in insulin production and signaling are suspected to share a key role in diabetes and Alzheimer disease (AD), two age-related pathologies. In this study, we investigated the interrelation between AD and diabetes using a high-fat diet (HFD) in a mouse model of genetically induced AD-like neuropathology (3xTg-AD). We first observed that cerebral expression of human AD transgenes led to peripheral glucose intolerance, associated with pancreatic human Aβ accumulation.

View Article and Find Full Text PDF

Essential tremor (ET) is the most prevalent adult-onset movement disorder. Despite its health burden, no clear pathognomonic sign has been identified to date because of the rarity of clinicopathological studies. Moreover, treatment options are still scarce and have not significantly changed in the last 30 years, underscoring the urgent need to develop new treatment avenues.

View Article and Find Full Text PDF

Monoclonal antibodies (mAbs) targeting blood-brain barrier (BBB) transporters are being developed for brain drug targeting. However, brain uptake quantification remains a challenge, particularly for large compounds, and often requires the use of radioactivity. In this work, we adapted an in situ brain perfusion technique for a fluorescent mAb raised against the mouse transferrin receptor (TfR) (clone Ri7).

View Article and Find Full Text PDF

The development of new treatments for essential tremor, the most frequent movement disorder, is limited by a poor understanding of its pathophysiology and the relative paucity of clinicopathological studies. Here, we report a post-mortem decrease in GABA(A) (35% reduction) and GABA(B) (22-31% reduction) receptors in the dentate nucleus of the cerebellum from individuals with essential tremor, compared with controls or individuals with Parkinson's disease, as assessed by receptor-binding autoradiography. Concentrations of GABA(B) receptors in the dentate nucleus were inversely correlated with the duration of essential tremor symptoms (r(2) = 0.

View Article and Find Full Text PDF

Dietary supplementation with n-3 polyunsaturated fatty acids (n-3 PUFA) reduces amyloid-β (Aβ) and tau pathology and improves cognitive performance in animal models of Alzheimer's disease (AD). To exclude confounding variables associated with the diet, we crossed 3 × Tg-AD mice (modeling AD neuropathology) with transgenic Fat-1 mice that express the fat-1 gene encoding a PUFA desaturase, which endogenously produces n-3 PUFA from n-6 PUFA. The expression of fat-1 shifted the n-3:n-6 PUFA ratio upward in the brain (+11%, p < 0.

View Article and Find Full Text PDF

The development of vectors for drug delivery to the central nervous system remains a major pharmaceutical challenge. Here, we have characterized the brain distribution of two monoclonal antibodies (MAbs) targeting the mouse transferrin receptor (TfR) (clones Ri7 and 8D3) compared with control IgGs after intravenous injection into mice. MAbs were fluorolabeled with either Alexa Fluor (AF) dyes 647 or 750.

View Article and Find Full Text PDF

It has been hypothesized that neuroinflammation triggered during brain development can alter brain functions later in life. We investigated the contribution of inflammation to the alteration of normal brain circuitries in the context of neuroexcitotoxicity following neonatal ventral hippocampal lesions in rats with ibotenic acid, an NMDA glutamate receptor agonist. Excitotoxic ibotenic acid lesions led to a significant and persistent astrogliosis and microglial activation, associated with the production of inflammatory mediators.

View Article and Find Full Text PDF

We have recently identified a neuroprotective role for omega-3 polyunsaturated fatty acids (n-3 PUFAs) in a toxin-induced mouse model of Parkinson's disease (PD). Combined with epidemiological data, these observations suggest that low n-3 PUFA intake is a modifiable environmental risk factor for PD. In order to strengthen these preclinical findings as prerequisite to clinical trials, we further investigated the neuroprotective role of n-3 PUFAs in Fat-1 mice, a transgenic model expressing an n-3 fatty acid desaturase converting n-6 PUFAs into n-3 PUFAs.

View Article and Find Full Text PDF

Docosahexaenoic (DHA) and eicosapentaenoic (EPA) acids are n-3 polyunsaturated fatty acids with a therapeutic potential for CNS diseases. Here, using an in situ brain perfusion technique in mice, we show that [(14)C]-DHA and [(14)C]-EPA readily cross the mouse blood-brain barrier (BBB) with brain transport coefficients (Clup) of 48+/-3microlg(-1)s(-1) and 52+/-4microlg(-1)s(-1), respectively. Mechanical capillary depletion of brain homogenates showed that less than 10% of [(14)C]-DHA or [(14)C]-EPA remained in endothelial cells of the brain vasculature, demonstrating that both molecules fully crossed the BBB.

View Article and Find Full Text PDF

Aging and metabolism-related disorders are risk factors for Alzheimer disease (AD). Because sirtuins may increase the life span through regulation of cellular metabolism, we compared the concentration of sirtuin 1 (SIRT1) in the brains of AD patients (n = 19) and controls (n = 22) using Western immunoblots and in situ hybridization. We report a significant reduction of SIRT1 (messenger RNA [mRNA], -29%; protein, -45%) in the parietal cortex of AD patients, but not in the cerebellum.

View Article and Find Full Text PDF

To investigate potential dietary risk factors of Alzheimer's disease (AD), triple transgenic (3xTg-AD) mice were exposed from 4 to 13 months of age to diets with a low n-3:n-6 polyunsaturated fatty acid (PUFA) ratio incorporated in either low-fat (5% w/w) or high-fat (35% w/w) formulas and compared with a control diet. The n-3:n-6 PUFA ratio was decreased independently of the dietary treatments in the frontal cortex of 3xTg-AD mice compared to non-transgenic littermates. Consumption of a high-fat diet with a low n-3:n-6 PUFA ratio increased amyloid-beta (Abeta) 40 and 42 concentrations in detergent-insoluble extracts of parieto-temporal cortex homogenates from 3xTg-AD mice.

View Article and Find Full Text PDF