Publications by authors named "Emoke Sikora"

Activated carbon (AC) and biochar (BC) are porous materials with large surface areas and widely used in environmental and industrial applications. In this study, different types of AC and BC samples were produced from sp. by a chemical activation and pyrolysis process and compared to commercial activated carbon samples.

View Article and Find Full Text PDF

The 2,4-toluenediamine (TDA) is one of the most important chemicals in the polyurethane industry, produced by the catalytic hydrogenation of 2,4-dinitrotoluene (DNT). The development of novel catalysts that can be easily recovered from the reaction mixture is of paramount importance. In our work, a NiFeO/N-BCNT supported magnetic catalyst was prepared by a modified coprecipitation method.

View Article and Find Full Text PDF

Toluene diamine (TDA) is a major raw material in the polyurethane industry and thus, its production is highly important. TDA is obtained through the catalytic hydrogenation of 2,4-dinitrotoluene (2,4-DNT). In this study a special hydrogenation catalyst has been developed by decomposition cobalt ferrite nanoparticles onto a natural clay-oxide nanocomposite (bentonite) surface using a microwave-assisted solvothermal method.

View Article and Find Full Text PDF

For pathogens identification, the PCR test is a widely used method, which requires the isolation of nucleic acids from different samples. This extraction can be based on the principle of magnetic separation. In our work, amine-functionalized magnesium ferrite nanoparticles were synthesized for this application by the coprecipitation of ethanolamine in ethylene glycol from Mg(II) and Fe(II) precursors.

View Article and Find Full Text PDF

2,4-diaminotoluene (TDA) is one of the most important polyurethane precursors produced in large quantities by the hydrogenation of 2,4-dinitrotoluene using catalysts. Any improvement during the catalysis reaction is therefore of significant importance. Separation of the catalysts by filtration is cumbersome and causes catalyst loss.

View Article and Find Full Text PDF

Granulated carbon nanotube-supported palladium and platinum-containing catalysts were developed. By using these, remarkable catalytic activity was achieved in chlorate ion hydrogenation. Nitrogen-doped bamboo-like carbon nanotubes (N-BCNTs) loaded gel beads were prepared by using Ca2+, Ni2+ or Fe3+ ions as precursors for cross-linking of sodium alginate.

View Article and Find Full Text PDF

Cellulose grains were carbonized and applied as catalyst supports for nickel- and magnetite-promoted bimetallic palladium- and platinum-containing catalysts. The bimetallic spherical aggregates of Pd and Pt particles were created to enhance the synergistic effect among the precious metals during catalytic processes. As a first step, the cellulose bead-based supports were impregnated by nitrate salts of nickel and iron and carbonized at 973 K.

View Article and Find Full Text PDF

A novel glycoanalytical approach was developed in this study for the purification of fluorescently derivatized N-glycans. Polyethylene glycol (PEG) modified iron-nanoparticles were synthetized by the combination of sonochemical treatment and combustion method. The prepared nanomaterials were applied for a systematic clean-up optimization to maximize purification efficiency of 2-AA labelled glycans.

View Article and Find Full Text PDF

Nitrogen-doped, bamboo-like carbon nanotubes (BCNTs) were synthesized from butylamine by catalytic chemical vapor deposition (CCVD method). The nanotubes were oxidized by HSO/HNO treatment and used to prepare calcium alginate gelled BCNT spheres. These beads were first carbonized and then Pd, Rh and Ni nanoparticles were anchored on the surface of the spheres.

View Article and Find Full Text PDF