Neurogenesis plays a crucial role in cognitive processes. During aging and in Alzheimer's disease (AD), altered neurogenesis and neuroinflammation are evident both in C57BL/6J, APP/PS1 (Tg) mice and humans. AD pathology may slow down upon drug treatment, for example, in a previous study of our group P33, a putative neuroprotective agent was found to exert advantageous effects on the elevated levels of APP, Aβ, and neuroinflammation.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common form of dementia characterized by cognitive dysfunctions. Pharmacological interventions to slow the progression of AD are intensively studied. A potential direction targets neuronal sigma-1 receptors (S1Rs).
View Article and Find Full Text PDFThe present experiments reveal the alterations of the hippocampal neuronal populations in chronic epilepsy. The mice were injected with a single dose of pilocarpine. They had status epilepticus and spontaneously recurrent motor seizures.
View Article and Find Full Text PDFBackground: Heat-shock protein B1 (HSPB1) is among the most well-known and versatile member of the evolutionarily conserved family of small heat-shock proteins. It has been implicated to serve a neuroprotective role against various neurological disorders via its modulatory activity on inflammation, yet its exact role in neuroinflammation is poorly understood. In order to shed light on the exact mechanism of inflammation modulation by HSPB1, we investigated the effect of HSPB1 on neuroinflammatory processes in an in vivo and in vitro model of acute brain injury.
View Article and Find Full Text PDFDouble staining protocols using the most popular immunoperoxidase techniques may raise difficulties. The two ordinary detection systems may cross-talk, when the primary antibodies are derived from phylogenetically closely related animals. A color shift of the 3,3'-diaminobenzidine (DAB) polymer may occur during the second development, resulting in poor distinction between the two kinds of deposits.
View Article and Find Full Text PDFRegulated intramembrane proteolysis (RIP) of the amyloid precursor protein (APP) leads to the formation of fragments, among which the intracellular domain of APP (AICD) was also identified to be a causative of early pathological events. AICD-counteracting proteins, such as Fe65, may serve as alternative therapeutic targets of Alzheimer's disease (AD). The detection of elevated levels of Fe65 in the brains of both human patients and APP transgenic mice may further strengthen the hypothesis that influencing the interaction between Fe65 and APP may have a beneficial effect on the course of AD.
View Article and Find Full Text PDFSeveral animal models of Alzheimer's disease have been used in laboratory experiments. Intrahippocampal injection of fibrillar amyloid-beta (fAβ) peptide represents one of the most frequently used models, mimicking Aβ deposits in the brain. In our experiment synthetic fAβ1-42 peptide was administered to rat hippocampus.
View Article and Find Full Text PDFCell Stress Chaperones
November 2013
Hsp27 belongs to the small heat shock protein family, which are ATP-independent chaperones. The most important function of Hsp27 is based on its ability to bind non-native proteins and inhibit the aggregation of incorrectly folded proteins maintaining them in a refolding-competent state. Additionally, it has anti-apoptotic and antioxidant activities.
View Article and Find Full Text PDFMisfolding, oligomerization, and aggregation of the amyloid-beta (Abeta) peptide is widely recognized as a central event in the pathogenesis of Alzheimer's disease (AD). Recent studies have identified soluble Abeta oligomers as the main pathogenic agents and provided evidence that such oligomeric Abeta aggregates are neurotoxic, disrupt synaptic plasticity, and inhibit long-term potentiation. A promising therapeutic strategy in the battle against AD is the application of short synthetic peptides which are designed to bind to specific Abeta-regions thereby neutralizing or interfering with the devastating properties of oligomeric Abeta species.
View Article and Find Full Text PDFActivity-dependent adaptive changes in the nervous system involve structural and functional changes in the cortical circuitry. In this work the cortical function was studied by repeated recording of the somatosensory and motor potentials evoked by whisker deflections after altered sensory-motor experience in adult mice. The latencies of motor and somatosensory evoked potentials were found to shorten, while their amplitudes decreased, after a behavioural challenge involving the vibrissal apparatus.
View Article and Find Full Text PDF