Amphiphilic copolymers are appealing materials because of their interesting architecture and tunable properties. In view of their application in the biomedical field, the preparation of these materials should avoid the use of toxic compounds as catalysts. Therefore, enzymatic catalysis is a suitable alternative to common synthetic routes.
View Article and Find Full Text PDFThis study investigated the molecular structure of the polyhydroxyalkanoate (PHA) produced via a microbiological shake flask experiment utilizing oxidized polypropylene (PP) waste as an additional carbon source. The bacterial strain H16 was selected as it is non-pathogenic, genetically stable, robust, and one of the best known producers of PHA. Making use of PHA oligomers, formed by controlled moderate-temperature degradation induced by carboxylate moieties, by examination of both the parent and fragmentation ions, the ESI-MS/MS analysis revealed the 3-hydroxybutyrate and randomly distributed 3-hydroxyvalerate as well as 3-hydroxyhexanoate repeat units.
View Article and Find Full Text PDFPoly(ester-ether-urethane)s copolymers are a resourceful class of biopolymers for the preparation of nanocarriers for drug delivery applications. However, a simple clinical translation for this synthetic material with biological and quality features is still needed. In this view, poly(ε-caprolactone)-co-poly(ethylene glycol) copolymers were synthesized as semi-bulk pilot (Kg) scale under mild conditions in absence of catalyst, bearing functional termini such as fluorescein tag and anticancer targeting moieties.
View Article and Find Full Text PDFA wide range of poly(hydroxyalkanoate)s (PHAs), a class of biodegradable polyesters produced by various bacteria grown under unbalanced conditions, have been proposed for the fabrication of tissue-engineering scaffolds. In this study, the manufacture of poly[(R)-3-hydroxybutyrate-co-(R)-3-hydroxyhexanoate] (or PHBHHx) scaffolds, by means of an additive manufacturing technique based on a computer-controlled wet-spinning system, was investigated. By optimizing the processing parameters, three-dimensional scaffolds with different internal architectures were fabricated, based on a layer-by-layer approach.
View Article and Find Full Text PDFJ Biomed Mater Res B Appl Biomater
October 2014
Nano/microfibrous polymeric constructs present various inherent advantages, such as highly porous architecture and high surface to volume ratio, making them attractive for tissue engineering purposes. Electrospinning is the most preferred technique for the fabrication of polymeric nanofibrous assemblies that can mimic the physical functions of native extracellular matrix greatly favoring cells attachment and thus influencing their morphology and activities. Different approaches have been developed to apply polymeric microfiber fabrication techniques (e.
View Article and Find Full Text PDFThe proteolytic enzyme α-chymotrypsin selectively cleaves the amorphous regions of silk fibroin protein (SFP) and allows the crystalline regions to self-assemble into silk microgels (SMGs) at physiological temperature. These microgels consist of lamellar crystals in the micrometer scale, in contrast to the nanometer-scaled crystals in native silkworm fibers. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis and zeta potential results demonstrated that α-chymotrypsin utilized only the non-amorphous domains or segments of the heavy chain of SFP to form negatively charged SMGs.
View Article and Find Full Text PDFA novel method was developed for extraction of short-chain-length poly(hydroxyalkanoates) (scl-PHA) from microbial biomass by the well-known "scl-PHA anti-solvent" acetone at elevated temperature and pressure in a closed system combining components for extraction, filtration, and product work-up. Recovery of scl-PHA using this new approach was compared with established methods using chloroform at ambient pressure. The new method performs similar regarding product purity (98.
View Article and Find Full Text PDFIn the present paper we report the exclusive microbial preparation of polyhydroxyalkanoates (PHA) containing 3-hydroxybutyrate (3HB), 3-hydroxyvalerate (3HV) and 4-hydroxybutyrate (4HB) as comonomers through the use of unexpensive carbon sources such as whey from dairy industry. Polymers were produced by growing H. pseudoflava DSM 1034 in minimal medium supplemented with sucrose, lactose or whey without any co-substrate added.
View Article and Find Full Text PDFJ Tissue Eng Regen Med
March 2015
'Additive manufacturing' (AM) refers to a class of manufacturing processes based on the building of a solid object from three-dimensional (3D) model data by joining materials, usually layer upon layer. Among the vast array of techniques developed for the production of tissue-engineering (TE) scaffolds, AM techniques are gaining great interest for their suitability in achieving complex shapes and microstructures with a high degree of automation, good accuracy and reproducibility. In addition, the possibility of rapidly producing tissue-engineered constructs meeting patient's specific requirements, in terms of tissue defect size and geometry as well as autologous biological features, makes them a powerful way of enhancing clinical routine procedures.
View Article and Find Full Text PDFThe last decade has witnessed enormous research focused on cationic polymers. Cationic polymers are the subject of intense research as non-viral gene delivery systems, due to their flexible properties, facile synthesis, robustness and proven gene delivery efficiency. Here, we review the most recent scientific advances in cationic polymers and their derivatives not only for gene delivery purposes but also for various alternative therapeutic applications.
View Article and Find Full Text PDFThe ultimate aim of this study is to identify new molecules that are able to recognize polymerized fibrin, which is the main component of a thrombus. These selective ligands can be exposed on the surface of particular nanoparticles used for the targeted delivery of fibrinolytic drugs. The targeted delivery of these drugs is expected to help to keep under control the severe side effects which can occur if the drugs are administered systemically.
View Article and Find Full Text PDFPoly(hydroxyalkanoates) (PHAs) constitute biodegradable polyesters and are considered among the most promising candidates to replace common petrochemical plastics in various applications. To date, all commercial processes for PHA production employ microbial discontinuous fed-batch fermentations. These processes feature drawbacks such as varying product quality and the inevitable periods of downtime for preparation and post-treatment of the bioreactor equipment.
View Article and Find Full Text PDFThe work presented here is aimed at suggesting plausible hypotheses for functional oligomeric forms of the human asialoglycoprotein receptor (ASGP-R), by applying a combination of different computational techniques. The functional ASGP-R is a hetero-oligomer, that comprises of several subunits of two different kinds (H1 and H2), which are highly homologous. Its stoichiometry is still unknown.
View Article and Find Full Text PDFThis research activity was aimed at the development of composite bioactive scaffolds made of biodegradable three-arm branched-star poly(ε-caprolactone) (*PCL), hydroxyapatite nanoparticles (HNPs) and clodronate (CD), a bisphosphonate that has demonstrated efficacy in the treatment of various bone diseases and as an anti-inflammatory drug. During the experimental work, the processing conditions for the fabrication of fibrous meshes, by either electrospinning or wet-spinning, were optimized. Stemming from a previous research activity on electrospinning of *PCL, *PCL/HNPs 3D meshes were developed, evaluating the influence of fabrication parameters on the fibres' morphology.
View Article and Find Full Text PDFWe have developed three-dimensional electrospun microfibrous meshes of a novel star branched three-arm poly(ε-caprolactone) (*PCL) as potential scaffolds for tissue engineering applications. The processing conditions required to obtain uniform fibers were optimized by studying their influence on fiber morphology and size. Polymer molecular weight and solution feed rate influenced both the mesh microstructure and the tensile properties of the developed mats.
View Article and Find Full Text PDFA copolyacrylate with semifluorinated and polydimethylsiloxane side chains (D5-3) was used as a surface modifier for a condensation-cured PDMS coating. The decyl fluorous group is represented by "D"; "5" is a 5 kDa silicone, and "3" is the mole ratio of fluorous to silicone side chains. Wetting behavior was assessed by dynamic contact angle (DCA) analysis using isopropanol, which differentiates silicone and fluorous wetting behavior.
View Article and Find Full Text PDFThe ability to predict the in vivo performance of multiblock-copolymer-based biomaterials is crucial for their applicability in the biomedical field. In this work, XPS analysis of PCL-PEG copolymers was carried out, as well as morphological and wettability evaluations by SEM and CA measurements, respectively. XPS analysis on films equilibrated in PBS demonstrated a further enrichment in the PEG component on the surface.
View Article and Find Full Text PDFTwo fluorinated/siloxane copolymers, O5/19 and D5/3, carrying 6 and 8 CF(2) groups in the fluoroalkyl tail, respectively, were used as the surface-active components of cured poly(dimethylsiloxane) (PDMS) blends at different loadings (0.3-5.0 wt % with respect to PDMS).
View Article and Find Full Text PDFJ Biomed Biotechnol
December 2009
Poly (hydroxyalkanoates) (PHAs) have recently attracted a great deal of academic and industrial interest for their biodegradability and biocompatibility making them suitable for environmental and biomedical applications. Poly(3-hydroxybutyrate-) (PHB-) and Poly(DL-lactide-co-glycolide) (PLGA-) based nanoparticles were prepared using the dialysis method as yet unreported for the preparation of nanoparticles based on PHB. Processing conditions were varied in order to evaluate their influence on morphology, drug encapsulation, and size of nanoparticles.
View Article and Find Full Text PDFFouling-release coatings were prepared from blends of a fluorinated/siloxane copolymer with a poly(dimethyl siloxane) (PDMS) matrix in order to couple the low modulus character of PDMS with the low surface tension typical for fluorinated polymers. The content of the surface-active copolymer was varied in the blend over a broad range (0.15-10 wt % with respect to PDMS).
View Article and Find Full Text PDFFibrin represents a suitable target for addressing delivery systems loaded by fibrinolytic drugs. Selective ligands capable to recognize fibrin could be used as targeting moieties for such systems. In this study the interactions between the gamma(312-324) epitope of human fibrin and peptidic ligands were analyzed by using experimental and computational methods.
View Article and Find Full Text PDFNew amphiphilic block copolymers S nSz m consisting of blocks with varied degrees of polymerization, n and m, of polystyrene, S, and polystyrene carrying an amphiphilic polyoxyethylene-polytetrafluoroethylene chain side-group, Sz, were prepared by controlled atom transfer radical polymerization (ATRP). The block copolymers, either alone or in a blend with commercial SEBS (10 wt% SEBS), were spin-coated in thinner films (200-400 nm) on glass and spray-coated in thicker films ( approximately 500 nm) on a SEBS underlayer (150-200 microm). Angle-resolved X-ray photoelectron spectroscopy (XPS) measurements proved that at any photoemission angle, varphi, the atomic ratio F/C was larger than that expected from the known stoichiometry.
View Article and Find Full Text PDFThis review provides an outline of the polymeric micro/nanostructured advanced systems that are suited for the controlled and targeted administration of, specifically, nonconventional drugs. The contribution of new trends in drug-delivery technology is focused on two major parts, dealing with brief surveys of: the biodegradable/bioerodible polymeric systems used in the formulation of micro/nanoparticles and techniques used in the preparation of micro/nanoparticles for their biomedical application in cancer treatment specifically, in inflammation pathologies, as oxygen carriers (blood substitutes) and in tissue-engineering practice. A small discussion of the future perspectives of the described systems is also given.
View Article and Find Full Text PDF