Implantable cell replacement therapies promise to completely restore the function of neural structures, possibly changing how we currently perceive the onset of neurodegenerative diseases. One of the major clinical hurdles for the routine implementation of stem cell therapies is poor cell retention and survival, demanding the need to better understand these mechanisms while providing precise and scalable approaches to monitor these cell-based therapies in both pre-clinical and clinical scenarios. This poses significant multidisciplinary challenges regarding planning, defining the methodology and requirements, prototyping and different stages of testing.
View Article and Find Full Text PDFThe embedded 3D printing of cells inside a granular support medium has emerged in the past decade as a powerful approach for the freeform biofabrication of soft tissue constructs. However, granular gel formulations have been restricted to a limited number of biomaterials that allow for the cost-effective generation of large amounts of hydrogel microparticles. Therefore, granular gel support media have generally lacked the cell-adhesive and cell-instructive functions found in the native extracellular matrix (ECM).
View Article and Find Full Text PDFThe pathophysiological progress of Parkinson's disease leads through degeneration of dopaminergic neurons in the substantia nigra to complete cell death and lack of dopamine in the striatum where it modulates motor functions. Transplantation of dopaminergic stem cell-derived neurons is a possible therapy to restore dopamine levels. We have previously presented multifunctional pyrolytic carbon coated leaky optoelectrical fibers (LOEFs) with laser ablated micro-optical windows (µOWs) as carriers for channelrhodopsin-2 modified optogenetically active neurons for light-induced on-demand dopamine release and amperometric real-time detection.
View Article and Find Full Text PDFHuman in vitro models of neural tissue with tunable microenvironment and defined spatial arrangement are needed to facilitate studies of brain development and disease. Towards this end, embedded printing inside granular gels holds great promise as it allows precise patterning of extremely soft tissue constructs. However, granular printing support formulations are restricted to only a handful of materials.
View Article and Find Full Text PDFA photoresponsive molecular-gated drug delivery system (DDS) based on silicone-hydrogel (poly(HEMA--PEGMEA)) interpenetrating polymer networks (IPNs) functionalized with carboxylated spiropyran (SPCOOH) was designed and demonstrated as an on-demand DDS. The triggered-release mechanism relies on controlling the wetting behavior of the surface by light, exploiting different hydrophobicities between the "closed" and "open" isomers of spiropyran as a photoswitchable molecular gate on the surface of IPN (SP-photogated IPN). Light-triggered release of doxycycline (DOX) as a model drug indicated that the spiropyran (SP) molecules provide a hydrophobic layer around the drug carrier and have a good gate-closing efficiency for IPNs with 20-30% hydrogel content.
View Article and Find Full Text PDFJ Electr Bioimpedance
January 2021
We present here the first impedance-based characterization of the differentiation process of two human mesencephalic fetal neural stem lines. The two dopaminergic neural stem cell lines used in this study, Lund human mesencephalic (LUHMES) and human ventral mesencephalic (hVM1 Bcl-X), have been developed for the study of Parkinsonian pathogenesis and its treatment using cell replacement therapy. We show that if only relying on impedance magnitude analysis, which is by far the most usual approach in, e.
View Article and Find Full Text PDFThree-dimensional brain organoids have emerged as a valuable model system for studies of human brain development and pathology. Here we establish a midbrain organoid culture system to study the developmental trajectory from pluripotent stem cells to mature dopamine neurons. Using single cell RNA sequencing, we identify the presence of three molecularly distinct subtypes of human dopamine neurons with high similarity to those in developing and adult human midbrain.
View Article and Find Full Text PDFConazole fungicides such as epoxiconazole are mostly used on cereals of crops to inhibit fungal growth through direct inhibition of sterol 14α-demethylase (CYP51A1). However, this enzyme is highly conserved and in humans it is part of the steroid hormone biosynthesis pathway. Endocrine disrupting effects of epoxiconazole have been shown in rodents and have been substantiated by in vitro data, however, the underlying molecular mechanisms are not clear.
View Article and Find Full Text PDFPyrolytic carbon microelectrodes (PCMEs) are a promising alternative to their conventional metallic counterparts for various applications. Thus, methods for the simple and inexpensive patterning of PCMEs are highly sought after. Here, we demonstrate the fabrication of PCMEs through the selective pyrolysis of SU-8 photoresist by irradiation with a low-power, 806 nm, continuous wave, semiconductor-diode laser.
View Article and Find Full Text PDFInherent limitations of the traditional approaches to study brain function and disease, such as rodent models and 2D cell culture platforms, have led to the development of 3D in vitro cell culture systems. These systems, products of multidisciplinary efforts encompassing stem cell biology, materials engineering, and biofabrication, have quickly shown great potential to mimic biochemical composition, structural properties, and cellular morphology and diversity found in the native brain tissue. Crucial to these developments have been the advancements in stem cell technology and cell reprogramming protocols that allow reproducible generation of human subtype-specific neurons and glia in laboratory conditions.
View Article and Find Full Text PDFBrain organoids are considered to be a highly promising in vitro model for the study of the human brain and, despite their various shortcomings, have already been used widely in neurobiological studies. Especially for drug screening applications, a highly reproducible protocol with simple tissue culture steps and consistent output, is required. Here we present an engineering approach that addresses several existing shortcomings of brain organoids.
View Article and Find Full Text PDFTo test large numbers of chemicals for developmental toxicity, rapid in vitro tests with standardized readouts for automated data acquisition are needed. However, the most widely used assay, the embryonic stem cell test, relies on the counting of beating embryoid bodies by visual inspection, which is laborious and time consuming. We previously developed the PluriBeat assay based on differentiation of human induced pluripotent stem cells (hiPSC) that we demonstrated to be predictive for known teratogens at relevant concentrations using the readout of beating cardiomyocytes.
View Article and Find Full Text PDFHuman brain tissue models such as cerebral organoids are essential tools for developmental and biomedical research. Current methods to generate cerebral organoids often utilize Matrigel as an external scaffold to provide structure and biologically relevant signals. Matrigel however is a nonspecific hydrogel of mouse tumor origin and does not represent the complexity of the brain protein environment.
View Article and Find Full Text PDFProtection or repair of the nigrostriatal pathway represents a principal disease-modifying therapeutic strategy for Parkinson's disease (PD). Glial cell line-derived neurotrophic factor (GDNF) holds great therapeutic potential for PD, but its efficacious delivery remains difficult. The aim of this study was to evaluate the potential of different biomaterials (hydrogels, microspheres, cryogels and microcontact printed surfaces) for reconstructing the nigrostriatal pathway in organotypic co-culture of ventral mesencephalon and dorsal striatum.
View Article and Find Full Text PDFAdvancements in research on the interaction of human neural stem cells (hNSCs) with nanotopographies and biomaterials are enhancing the ability to influence cell migration, proliferation, gene expression, and tailored differentiation toward desired phenotypes. Here, the fabrication of pyrolytic carbon nanograss (CNG) nanotopographies is reported and demonstrated that these can be employed as cell substrates boosting hNSCs differentiation into dopaminergic neurons (DAn), a long-time pursued goal in regenerative medicine based on cell replacement. In the near future, such structures can play a crucial role in the near future for stem-cell based cell replacement therapy (CRT) and bio-implants for Parkinson's disease (PD).
View Article and Find Full Text PDFCompartmentalized microfluidic platforms are an invaluable tool in neuroscience research. However, harnessing the full potential of this technology remains hindered by the lack of a simple fabrication approach for the creation of intricate device architectures with high-aspect ratio features. Here, a hybrid additive manufacturing approach is presented for the fabrication of open-well compartmentalized neural devices that provides larger freedom of device design, removes the need for manual postprocessing, and allows an increase in the biocompatibility of the system.
View Article and Find Full Text PDFThere is a great need for novel in vitro methods to predict human developmental toxicity to comply with the 3R principles and to improve human safety. Human-induced pluripotent stem cells (hiPSC) are ideal for the development of such methods, because they are easy to retrieve by conversion of adult somatic cells and can differentiate into most cell types of the body. Advanced three-dimensional (3D) cultures of these cells, so-called embryoid bodies (EBs), moreover mimic the early developing embryo.
View Article and Find Full Text PDFEvaluation and understanding the effect of drug delivery in in vitro systems is fundamental in drug discovery. We present an assay based on real-time electrical impedance spectroscopy (EIS) measurements that can be used to follow the internalisation and cytotoxic effect of a matrix metalloproteinase (MMP)-sensitive liposome formulation loaded with oxaliplatin (OxPt) on colorectal cancer cells. The EIS response identified two different cellular processes: (i) a negative peak in the cell index (CI) within the first 5 h, due to onset of liposome endocytosis, followed by (ii) a subsequent CI increase, due to the reattachment of cells until the onset of cytotoxicity with a decrease in CI.
View Article and Find Full Text PDFVesicles constructed of either synthetic polymers alone (polymersomes) or a combination of polymers and lipids (lipo-polymersomes) demonstrate excellent long-term stability and ability to integrate membrane proteins. Applications using lipo-polymersomes with integrated membrane proteins require suitable supports to maintain protein functionality. Using lipo-polymersomes loaded with the light-driven proton pump bacteriorhodopsin (BR), we demonstrate here how the photocurrent is influenced by a chosen support.
View Article and Find Full Text PDFIn Parkinson's disease, the degeneration of dopaminergic neurons in substantia nigra leads to a decrease in the physiological levels of dopamine in striatum. The existing dopaminergic therapies effectively alleviate the symptoms, albeit they do not revert the disease progression and result in significant adverse effects. Transplanting dopaminergic neurons derived from stem cells could restore dopamine levels without additional motor complications.
View Article and Find Full Text PDFDevelopment of microsystems, which enable "sample-to-answer" detection from real samples, is often challenging. We present the first integration of supported liquid membrane extraction combined with electrochemical detection on a centrifugal fluidic platform. The developed lab-on-a-disc (LoD) system enabled the separation, enrichment, and subsequent electrochemical detection of the target analyte from a complex sample mixture.
View Article and Find Full Text PDFAt the crossroads of chemistry, electronics, mechanical engineering, polymer science, biology, tissue engineering, computer science, and materials science, electrical devices are currently being engineered that blend directly within organs and tissues. These sophisticated devices are mediators, recorders, and stimulators of electricity with the capacity to monitor important electrophysiological events, replace disabled body parts, or even stimulate tissues to overcome their current limitations. They are therefore capable of leading humanity forward into the age of cyborgs, a time in which human biology can be hacked at will to yield beings with abilities beyond their natural capabilities.
View Article and Find Full Text PDF