This study investigated the effect of NaCl on the uptake, translocation, compartmentalization, and chelation of cadmium (Cd) in the halophyte Inula crithmoides. Seedlings were subjected hydroponically for 21 days to 25 and 50 μM Cd applied alone or combined with 100 mM NaCl. Findings revealed that, Cd alone induced intense chlorosis and necrosis and altered plant development resulting in diminished biomass production.
View Article and Find Full Text PDFIntroduction: Epilepsy is one of the most stigmatizing disorders. Stigma and negative attitudes associated with epilepsy are due to poor public awareness and knowledge. This study evaluated knowledge, awareness, and attitude toward epilepsy among Tunisian general population.
View Article and Find Full Text PDFHalophytes are able to tolerate relatively high concentrations of hazardous metals in a growing substrate, what makes them suitable candidates for phytoremediation of metal-contaminated soils. In this work, we aimed to study the physiological responses of the halophyte Sesuvium portulacastrum L. to Ni, with main focus on Ni localization, compartmentation and ligand environment, to decipher Ni tolerance and toxicity mechanisms.
View Article and Find Full Text PDFSesuvium portulacastrum, a halophyte with high tolerance to heavy metals like Cd, Pb and Ni is considered for phytoremediation of metal contaminated saline soils. The tolerance to a selected metal ion could, by hypothesis, be stimulated through in vitro adaptation and regeneration of the plant. Seedlings obtained by in vitro micro-propagation, were exposed to 0, 25 and 50 μM Ni, as NiCl, in agar-based medium for 30 days.
View Article and Find Full Text PDFIt has been shown that halophytes are able to successfully cope with heavy metal toxicity, suggesting their possible use for remediation of metal contaminated soils. In this work, Ni tolerance and accumulation in two halophytes, Sesuvium portulacastrum (L.) L.
View Article and Find Full Text PDFThe implication of organic acids in Cd and Ni translocation was studied in the halophyte species Sesuvium portulacastrum. Citric, fumaric, malic, and ascorbic acids were separated and quantified by HPLC technique in shoots, roots and xylem saps of plants grown on nutrient solutions added with 50 μM Cd, 100 μM Ni and the combination of 50 μM Cd + 100 μM Ni. Results showed that Cd had no significant impact on biomass production while Ni and the combination of both metals drastically affected plant development.
View Article and Find Full Text PDFIt has previously been shown that certain halophytes can grow and produce biomass despite of the contamination of their saline biotopes with toxic metals. This suggests that these plants are able to cope with both salinity and heavy metal constraints. NaCl is well tolerated by halophytes and apparently can modulate their responses to Cd.
View Article and Find Full Text PDF