We describe how to prepare unincubated avian eggs to obtain a greater number of clearly visible Rauber's sickles for experimental embryology. After hemi-sectioning of unincubated chicken (Gallus domesticus) blastoderms and cultivating both halves in vitro, two kinds of development can be discerned: (1) when the unincubated blastoderms were hemi-sectioned according to the plane of bilateral symmetry, going through the middle region of Rauber's sickle, we obtained two hemi-embryos (a left and a right one). Each contained a half primitive streak, localized at the cut edge (starting from the most median part of Rauber's sickle) giving rise to a half mesoblast mantle and half area vasculosa, thus indicating mosaic development (each part of the whole fertilized egg would be able to form independently on its own).
View Article and Find Full Text PDFWe studied early neurulation events in vitro by transplanting quail Hensen's node, central prenodal regions (before the nodus as such develops), or upper layer parts of it on the not yet definitively committed upper layer of chicken anti-sickle regions (of unincubated blastoderms), eventually associated with central blastoderm fragments. We could demonstrate by this quail-chicken chimera technique that after the appearance of a pronounced thickening of the chicken upper layer by the early inductive effect of neighboring endophyll, a floor plate forms by insertion of Hensen's node-derived quail cells into the median part of the groove. This favors, at an early stage, the floor plate "allocation" model that postulates a common origin for notochord and median floor plate cells from the vertebrate's secondary major organizer (Hensen's node in this case).
View Article and Find Full Text PDFAfter placing in vitro, central subgerminal ooplasm (containing a central nucleus of Pander) from a quail germ disc of a prelaid egg (before symmetrization) on the upper layer of an isolated chicken antisickle, we observed the induction of a radially oriented preneural plate (without interference of chordamesoblast). This observation suggests the primary existence during the period of symmetrization in utero of an until now unknown temporospatially linked "vertical" effect, emanating from the nucleus of Pander, on the parallel (pre)neural plate anlage forming part of the area centralis in the overlying blastoderm. For comparison, we "sandwiched" in vitro a quail sickle endoblast fragment between the deep side of the upper layer of an isolated chicken antisickle region and a central subgerminal ooplasmic mass.
View Article and Find Full Text PDFIn histological sections through chicken blastoderms of different ages we describe the temporospatial relationship between junctional endoblast, the formation of blood islands (appearing first from a peripherally migrating mesoblastic blastema), and the formation of coelomic vesicles developing later in/and from a more superficially extending mesoblastic blastema (coelomic mesoblast). After unilateral removal of the Rauber's sickle-derived junctional endoblast in early streak blastoderms (stage 2-4; Vakaet [1970] Arch Biol 81:387-426) and culture to stage 11 (Hamburger and Hamilton [1951] J Morphol 88:49-92), we observed that the early formation of the coelomic cavity was locally or totally disturbed in the operated area. Besides the simultaneous absence of blood islands, the coelomic vesicles did not form normally.
View Article and Find Full Text PDFWhen in unincubated chicken blastoderms the Rauber's sickle is (sub)totally mechanically removed by selective scraping, the further evolution of the blastoderm in culture is often profoundly disturbed, going from only expansion of the upper layer and preneural plate formation to the development of a slowly growing miniature embryo. Our results suggest that the developmental potencies of the embryo are related to the presence or absence of Rauber's sickle material left after its removal. This can be checked after culture by the presence or nonpresence of junctional endoblast (derived from Rauber's sickle) and the concomitant induction of blood islands in the immediate neighborhood.
View Article and Find Full Text PDFThe present experimental in vitro study suggests that a primitive streak (PS) in avian blastoderms is induced by diffusion of morphogenetic substances emanating from Rauber's sickle. Indeed, even without direct contact between a quail Rauber's sickle and the reacting upper layer (by interposition of a vitelline membrane), a PS can be induced in the isolated area centralis or antisickle region of unincubated chicken blastoderms. The so-formed PSs are localized below the vitelline membrane in the immediate neighborhood of the apposed Rauber's sickle material.
View Article and Find Full Text PDFUsing the quail-chick chimera technique, we followed the fate of Rauber's sickle cells in older whole blastoderms (cultured for approximately 2 days): after removal of the autochthonous Rauber's sickle from an unincubated chicken blastoderm, a quail Rauber's sickle was grafted isotopically and isochronically in its place. In transverse sections through these chimeras, the grafted quail Rauber's sickle cells were seen to have transformed into a broad row or ridge of quail junctional endoblast cells extending at the inner border of the area containing blood islands. After unilateral removal of the junctional endoblast from an intermediate streak chicken blastoderm (Stage 3; Hamburger and Hamilton [1951] J Morphol 88:49-92), we observed during further in vitro culture that at the operated side, in the area previously occupied by this junctional endoblast, blood islands no longer developed.
View Article and Find Full Text PDF