Objective: To evaluate functional outcomes of surgery of spastic hip adductor muscles (obturator neurotomy with or without adductor longus tenotomy) in ambulatory and non-ambulatory patients, using preoperatively defined personalized goals.
Design: Retrospective observational descriptive study.
Patients: Twenty-three patients with adductor spasticity who underwent obturator neurotomy between May 2016 and May 2021 at the Clinique des Cèdres, Cornebarrieu, France, were included.
Background: In post-stroke hemiparetic subjects, a systematic and quantified description of the shortening default and compensatory movements during the swing phase of gait is essential to guide treatments and assess the impact of therapeutic interventions. However, such a systematic approach does not exist in the current clinical practice.
Aim: The aim of this study was to present a method improving the quantification and visualization of the kinematics of both lower limbs during the swing phase of gait, more specifically the origin of shortening default and the weight of compensations, based on a tool specifically developed: ToulGaitViz.
Accurate assessment of upper-limb movement alterations is a key component of post-stroke follow-up. Motion capture (MoCap) is the gold standard for assessment even in clinical conditions, but it requires a laboratory setting with a relatively complex implementation. Alternatively, inertial measurement units (IMUs) are the subject of growing interest, but their accuracy remains to be challenged.
View Article and Find Full Text PDFSpastic equinus foot is a common deformity in neurologic patients who compromise walking ability. It is related to the imbalance between weak dorsiflexion and overactive plantar flexor muscles. To achieve the best functional results after surgical management, the challenge is to identify the relevant components involved in the deformity using several methods, namely, examination in the supine position, motor nerve blocks allowing transient anesthesia of suspected overactive muscles, and kinematic and electromyographic data collected during an instrumented 3D gait analysis.
View Article and Find Full Text PDFElectromyographic (EMG) raw signals are sensitive to intrinsic and extrinsic factors. Consequently, EMG normalization is required to draw proper interpretations of standardized data. Specific recommendations are needed regarding a relevant EMG normalization method for participants who show atypical EMG patterns, such as post-stroke subjects.
View Article and Find Full Text PDF