Publications by authors named "Emmanuelle d'Alencon"

Background: An invasion occurs when introduced species establish and maintain stable populations in areas outside of their native habitat. Adaptive evolution has been proposed to contribute to this process. The fall armyworm (Spodoptera frugiperda) is one of the major pest insects infesting maize in both invaded and native areas.

View Article and Find Full Text PDF

The fall armyworm (FAW) Spodoptera frugiperda is thought to have undergone a rapid 'west-to-east' spread since 2016 when it was first identified in western Africa. Between 2018 and 2020, it was recorded from South Asia (SA), Southeast Asia (SEA), East Asia (EA), and Pacific/Australia (PA). Population genomic analyses enabled the understanding of pathways, population sources, and gene flow in this notorious agricultural pest species.

View Article and Find Full Text PDF

The fall armyworm (FAW; Spodoptera frugiperda) is one of the major agricultural pest insects. FAW is native to the Americas, and its invasion was first reported in West Africa in 2016. Then it quickly spread through Africa, Asia, and Oceania, becoming one of the main threats to corn production.

View Article and Find Full Text PDF

Background: Divergent selection on host-plants is one of the main evolutionary forces driving ecological speciation in phytophagous insects. The ecological speciation might be challenging in the presence of gene flow and assortative mating because the direction of divergence is not necessarily the same between ecological selection (through host-plant adaptation) and assortative mating. The fall armyworm (FAW), a major lepidopteran pest species, is composed of two sympatric strains, corn and rice strains, named after two of their preferred host-plants.

View Article and Find Full Text PDF

Native to the Americas, the invasive Spodoptera frugiperda (fall armyworm; FAW) was reported in West Africa in 2016, followed by its chronological detection across the Old World and the hypothesis of an eastward Asia expansion. We explored population genomic signatures of American and Old World FAW and identified 12 maternal mitochondrial DNA genome lineages across the invasive range. 870 high-quality nuclear single nucleotide polymorphic DNA markers identified five distinct New World population clusters, broadly reflecting FAW native geographical ranges and the absence of host-plant preferences.

View Article and Find Full Text PDF

Background: Eukaryotic genomes are packaged by Histone proteins in a structure called chromatin. There are different chromatin types. Euchromatin is typically associated with decondensed, transcriptionally active regions and heterochromatin to more condensed regions of the chromosomes.

View Article and Find Full Text PDF

Background: The degree to which adaptation to same environment is determined by similar molecular mechanisms, is a topic of broad interest in evolutionary biology, as an indicator of evolutionary predictability. We wished to address if adaptation to the same host plant in phytophagous insects involved related gene expression patterns. We compared sRNA-Seq and RNA-Seq data between two pairs of taxa of Ostrinia and Spodoptera frugiperda sharing maize as host-plant.

View Article and Find Full Text PDF

Field evolved resistance to insecticides is one of the main challenges in pest control. The fall armyworm (FAW) is a lepidopteran pest species causing severe crop losses, especially corn. While native to the Americas, the presence of FAW was confirmed in West Africa in 2016.

View Article and Find Full Text PDF

The noctuid genus Spodoptera currently consists of 31 species with varied host plant breadths, ranging from monophagous and oligophagous non-pest species to polyphagous pests of economic importance. Several of these pest species have become major invaders, colonizing multiple continents outside their native range. Such is the case of the infamous fall armyworm, Spodoptera frugiperda (J.

View Article and Find Full Text PDF

Background: The process of speciation involves differentiation of whole genome sequences between a pair of diverging taxa. In the absence of a geographic barrier and in the presence of gene flow, genomic differentiation may occur when the homogenizing effect of recombination is overcome across the whole genome. The fall armyworm is observed as two sympatric strains with different host-plant preferences across the entire habitat.

View Article and Find Full Text PDF

Understanding the genetic basis of insecticide resistance is a key topic in agricultural ecology. The adaptive evolution of multi-copy detoxification genes has been interpreted as a cause of insecticide resistance, yet the same pattern can also be generated by the adaptation to host-plant defense toxins. In this study, we tested in the fall armyworm, Spodoptera frugiperda (Lepidoptera: Noctuidae), if adaptation by copy number variation caused insecticide resistance in two geographically distinct populations with different levels of resistance and the two host-plant strains.

View Article and Find Full Text PDF

The rapid wide-scale spread of fall armyworm (Spodoptera frugiperda) has caused serious crop losses globally. However, differences in the genetic background of subpopulations and the mechanisms of rapid adaptation behind the invasion are still not well understood. Here we report the assembly of a 390.

View Article and Find Full Text PDF

Background: A change in the environment may impair development or survival of living organisms leading them to adapt to the change. The resulting adaptation trait may reverse, or become fixed in the population leading to evolution of species. Deciphering the molecular basis of adaptive traits can thus give evolutionary clues.

View Article and Find Full Text PDF

Background: The 1 isolated from (hereafter JcDV) is an invertebrate parvovirus considered as a viral transduction vector as well as a potential tool for the biological control of insect pests. Previous works showed that JcDV-based circular plasmids experimentally integrate into insect cells genomic DNA.

Methods: In order to approach the natural conditions of infection and possible integration, we generated linear JcDV- based molecules which were transfected into non permissive () cultured cells.

View Article and Find Full Text PDF

The tobacco cutworm, Spodoptera litura, is among the most widespread and destructive agricultural pests, feeding on over 100 crops throughout tropical and subtropical Asia. By genome sequencing, physical mapping and transcriptome analysis, we found that the gene families encoding receptors for bitter or toxic substances and detoxification enzymes, such as cytochrome P450, carboxylesterase and glutathione-S-transferase, were massively expanded in this polyphagous species, enabling its extraordinary ability to detect and detoxify many plant secondary compounds. Larval exposure to insecticidal toxins induced expression of detoxification genes, and knockdown of representative genes using short interfering RNA (siRNA) reduced larval survival, consistent with their contribution to the insect's natural pesticide tolerance.

View Article and Find Full Text PDF

Emergence of polyphagous herbivorous insects entails significant adaptation to recognize, detoxify and digest a variety of host-plants. Despite of its biological and practical importance - since insects eat 20% of crops - no exhaustive analysis of gene repertoires required for adaptations in generalist insect herbivores has previously been performed. The noctuid moth Spodoptera frugiperda ranks as one of the world's worst agricultural pests.

View Article and Find Full Text PDF

Nowadays molecular species delimitation methods promote the identification of species boundaries within complex taxonomic groups by adopting innovative species concepts and theories (e.g. branching patterns, coalescence).

View Article and Find Full Text PDF

Herbivorous insects represent the most species-rich lineages of metazoans. The high rate of diversification in herbivorous insects is thought to result from their specialization to distinct host-plants, which creates conditions favorable for the build-up of reproductive isolation and speciation. These conditions rely on constraints against the optimal use of a wide range of plant species, as each must constitute a viable food resource, oviposition site and mating site for an insect.

View Article and Find Full Text PDF

The moth Spodoptera frugiperda is a well-known pest of crops throughout the Americas, which consists of two strains adapted to different host-plants: the first feeds preferentially on corn, cotton and sorghum whereas the second is more associated with rice and several pasture grasses. Though morphologically indistinguishable, they exhibit differences in their mating behavior, pheromone compositions, and show development variability according to the host-plant. Though the latter suggest that both strains are different species, this issue is still highly controversial because hybrids naturally occur in the wild, not to mention the discrepancies among published results concerning mating success between the two strains.

View Article and Find Full Text PDF
Article Synopsis
  • - Spodoptera frugiperda, a significant agricultural pest in the Americas, affects crops like corn and cotton and serves as a model organism for various biological studies, including pest behavior and plant adaptation.
  • - The study compiles a reference transcriptome (Sf_TR2012b) from RNA sequences across multiple developmental stages and tissues, assessing its quality by analyzing gene families related to development, immunity, and sensory functions.
  • - The findings confirm Sf_TR2012b as a reliable reference for gene expression research, revealing spatial and temporal gene activity and highlighting the expression of olfactory receptors in both sensory and other body tissues like fat bodies.
View Article and Find Full Text PDF

The proteins of the X-tox family have imperfectly conserved tandem repeats of several defensin-like motifs known as cysteine-stabilized αβ (CS-αβ) motifs. These immune-related proteins are inducible and expressed principally in hemocytes, but they have lost the antimicrobial properties of the ancestral defensins from which they evolved. We compared x-tox gene structure and expression in three lepidopteran species (Spodoptera frugiperda, Helicoverpa armigera and Bombyx mori).

View Article and Find Full Text PDF

Repeat-associated small interfering RNAs (rasiRNAs) are derived from various genomic repetitive elements and ensure genomic stability by silencing endogenous transposable elements. Here we describe a novel subset of 46 rasiRNAs named LNCR rasiRNAs due to their homology with one long non-coding RNA (LNCR) of Spodoptera frugiperda. LNCR operates as the intermediate of an unclassified transposable element (TE-LNCR).

View Article and Find Full Text PDF

The discovery of an homolog of the human centromeric protein B, CENP-B, in an EST database of the holocentric insect species Spodoptera frugiperda prompted us to further characterize that gene because i) CENP-B has not been described in invertebrates yet ii) it should be a milestone in the molecular characterization of the holocentric centromere of Lepidoptera. Like its human counterpart, the Sf CENP-B protein is related to the transposase of the pogo transposable element (TE) of D. melanogaster.

View Article and Find Full Text PDF

We used preS2-S'-beta-galactosidase, a three domain fusion protein that aggregates extensively at 43 degrees C in the cytoplasm of Escherichia coli to search for multicopy suppressors of protein aggregation and inclusion bodies formation, and took advantage of the known differential solubility of preS2-S'-beta-galactosidase at 37 and 43 degrees C to develop a selection procedure for the gene products that would prevent its aggregation in vivo at 43 degrees C. First, we demonstrate that the differential solubility of preS2-S'-beta-galactosidase results in a lactose-positive phenotype at 37 degrees C as opposed to a lactose-negative phenotype at 43 degrees C. We searched for multicopy suppressors of preS2-S'-beta-galactosidase aggregation at 43 degrees C by selecting pink lactose-positive colonies on a background of white lactose-negative colonies after transformation of bacteria with an E.

View Article and Find Full Text PDF