Drops in extensional flow undergo a deformation, which is primarily fixed by a balance between their surface tension and the viscous stress. This deformation, predicted and measured by Taylor on millimetric drops, is expected to be affected by the presence of surfactants but has never been measured systematically. We provide a controlled experiment allowing us to measure this deformation as a function of the drop size and of the shear stress for different surfactants at varying concentrations.
View Article and Find Full Text PDFDuring coating processes, dust deposition can lead to an uneven thickness in the resulting film, posing significant problems in industrial processes. Our study explores the effects of solid defects using a vertical cylindrical fiber deposited on a silicone oil film coating a horizontal solid substrate. We use a hyperspectral camera to measure the film thickness by interferometry in the vicinity of the defect.
View Article and Find Full Text PDFPressure-driven coarsening triggers bubble rearrangements in liquid foams. Our experiments show that changing the continuous phase rheology can alter these internal bubble dynamics without influencing the coarsening kinetics. Through bubble tracking, we find that increasing the matrix yield stress permits bubble growth without stress relaxation via neighbor-switching events, promoting more spatially homogeneous rearrangements and decoupling bubble growth from mobility.
View Article and Find Full Text PDFWe investigate the ultraslow structural relaxation of ageing foams with rheologically tunable continuous phases. We probe the bubble dynamics associated with pressure-driven foam coarsening using differential dynamic microscopy, which allows characterising the sample dynamics in reciprocal space with imaging experiments. Similar to other out-of-equilibrium jammed soft systems, these foams exhibit compressed exponential relaxations, with a ballistic-like linear dependency of the relaxation rate on the scattering wavevector.
View Article and Find Full Text PDFFoams coarsen because of pressure differences between bubbles of different sizes. We study the coarsening of quasi-2D foams made from model yield stress fluids: concentrated oil-in-water emulsions. We show that increasing the yield stress of the foamed emulsion continuous phase leads to both slower coarsening and irreversible structural change.
View Article and Find Full Text PDFWe consider the lifetime of rectangular vertical soap films and we explore the influence of relative humidity and both dimensions on the stability of large soap films, reaching heights of up to 1.2 m. Using an automated rupture detection system, we achieve a robust statistical measurement of their lifetimes and we also measure the film thinning dynamics.
View Article and Find Full Text PDFVarious parameters affect foam stability: surface and bulk rheology of the solution, gravitational drainage, mechanical vibrations, bubble gas composition, and also evaporation. Evaporation is often considered through the prism of liquid loss but also induces a cooling effect due to the enthalpy of vaporization. In this study, we combine a theoretical and experimental approach to explore the temperature field in a foam column evaporating from the top.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
September 2023
Coarsening of two-phase systems is crucial for the stability of dense particle packings such as alloys, foams, emulsions, or supersaturated solutions. Mean field theories predict an asymptotic scaling state with a broad particle size distribution. Aqueous foams are good model systems for investigations of coarsening-induced structures, because the continuous liquid as well as the dispersed gas phases are uniform and isotropic.
View Article and Find Full Text PDFWe report foam coarsening studies which were performed in the International Space Station (ISS) to suppress drainage due to gravity. Foams and bubbly liquids with controlled liquid fractions between 15 and 50% were investigated to study the transition between bubble growth laws previously reported near the dry limit → 0 and the dilute limit → 1 (Ostwald ripening). We determined the coarsening rates for the driest foams and the bubbly liquids, they are in close agreement with theoretical predictions.
View Article and Find Full Text PDFWhen an open tube of small diameter touches a bubble of a larger diameter, the bubble spontaneously shrinks and pushes a soap film into the tube. We characterize the dynamics for different bubble sizes and number of soap films in the tube. We rationalize this observation from a mechanical force balance involving the Laplace pressure of the bubble and the viscous force from the advancing soap lamellae in the tube.
View Article and Find Full Text PDFSingle-particle electron cryo-microscopy (cryo-EM) has become an effective and straightforward approach to determine the structure of membrane proteins. However, obtaining cryo-EM grids of sufficient quality for high-resolution structural analysis remains a major bottleneck. One of the difficulties arises from the presence of detergents, which often leads to a lack of control of the ice thickness.
View Article and Find Full Text PDFFoams are unstable jammed materials. They evolve over timescales comparable to their "time of use", which makes the study of their destabilisation mechanisms crucial for applications. In practice, many foams are made from viscoelastic fluids, which are observed to prolong their lifetimes.
View Article and Find Full Text PDFRecent advances have demonstrated that evaporation can play a significant role on soap film stability, which is a key concern in many industrial areas but also for children playing with bubbles. Thus, evaporation leads to a film thinning but also to a film cooling, which has been overlooked for soapy objects. Here, we study the temperature variation of an evaporating soap film for different values of relative humidity and glycerol concentrations.
View Article and Find Full Text PDFLarge bubbles are primarily used in physics laboratories to study 2D turbulence, surface wavers, and fundamental properties of soap systems. Outside of physics, blowing large bubbles is also a part of many performances and shows. Both the scientific and artistic communities usually want to get reasonably stable foam films.
View Article and Find Full Text PDFIn this paper, we investigate the thinning dynamics of evaporating surfactant-stabilised surface bubbles by considering the role of physical-chemistry of solutions used in a liquid bath. We study the impact of the surfactant concentration below and above the cmc (critical micelle concentration) and the role of ambient humidity. First, in a humidity-saturated atmosphere, we show that if the initial thickness depends on the surfactant concentration and is limited by the surface elasticity, the drainage dynamics are very well described from the capillary and gravity contributions.
View Article and Find Full Text PDFArtists, using empirical knowledge, manage to generate and play with giant soap films and bubbles. Until now, scientific studies of soap films generated at a controlled velocity and without any feeding from the top, studied films of a few square centimeters. The present work aims to present a new setup to generate and characterize giant soap films (2 m [Formula: see text] 0.
View Article and Find Full Text PDFSurface bubbles are present in many industrial processes and in nature, as well as in carbonated beverages. They have motivated many theoretical, numerical and experimental works. This paper presents the current knowledge on the physics of surface bubbles lifetime and shows the diversity of mechanisms at play that depend on the properties of the bath, the interfaces and the ambient air.
View Article and Find Full Text PDFAlthough street artists have the know-how to blow bubbles over one meter in length, the bubble width is typically determined by the size of the hoop, or wand they use. In this article we explore a regime in which, by blowing gently downwards, we generate bubbles with radii up to ten times larger than the wand. We observe the big bubbles at lowest air speeds, analogous to the dripping mode observed in droplet formation.
View Article and Find Full Text PDFComplex liquids flow is known to be drastically affected by the roughness condition at the interfaces. We combined stresses measurements and observations of the flow during the motion of different rough surfaces in dry liquid foams. We visually show that three distinct friction regimes exist: slippage, stick-slip motion, and anchored soap films.
View Article and Find Full Text PDFSurface bubbles have attracted much interest in the past few decades. In this article, we aim to explore the lifetime and thinning dynamics of centimetric surface bubbles. We study the impact of the bubble size as well as that of the atmospheric humidity through a careful control and systematic variation of the relative humidity in the measuring chamber.
View Article and Find Full Text PDFThe coarsening of quasi-2D wet foams is well described theoretically by the model of Schimming and Durian, that takes into account the diffusion through the Plateau borders and the vertices in a rigorous manner. In this article, we describe an experimental study of coarsening in which the foam film permeability is measured in such quasi-2D wet foams. We first performed a full characterization of the structure of the studied foams.
View Article and Find Full Text PDFWhile coalescence is ultimately the most drastic destabilization process in foams, its underlying processes are still unclear. To better understand them, we track individual coalescence events in two-dimensional foams at controlled capillary pressure. We obtain statistical information revealing the influence of the different parameters which have been previously proposed to explain coalescence.
View Article and Find Full Text PDFAlthough soap films are prone to evaporate due to their large surface to volume ratio, the effect of evaporation on macroscopic film features has often been disregarded in the literature. In this work, we experimentally investigate the influence of environmental humidity on soap film stability. An original experiment allows to measure both the maximum length of a film pulled at constant velocity and its thinning dynamics in a controlled atmosphere for various values of the relative humidity [Formula: see text].
View Article and Find Full Text PDFAdv Colloid Interface Sci
September 2017
A solid withdrawn from a liquid bath entrains a film. In this review, after recalling the predictions and results for pure Newtonian liquids coated on simple solids, we analyze the deviations to this ideal case exploring successively three potential sources of complexity: the liquid-air interface, the bulk rheological properties of the liquid and the mechanical or chemical properties of the solid. For these different complexities, we show that significant effects on the film thickness are observed experimentally and we summarize the theoretical analysis presented in the literature, which attempt to rationalize these measurements.
View Article and Find Full Text PDFThe properties of liquid dispersions, such as foams or emulsions, depend strongly on the volume fraction ϕ of the continuous phase. Concentrating on the example of foams, we show experimentally and theoretically that ϕ may be related to the fraction ϕ of the surface at a wall which is wetted by the continuous phase - given an expression for the interfacial energy or osmotic pressure of the bulk system. Since the surface fraction ϕ can be readily determined from optical measurement and since there are good general approximations available for interfacial energy and osmotic pressure we thus arrive at an advantageous method of estimating ϕ.
View Article and Find Full Text PDF