Publications by authors named "Emmanuelle Javaux"

Deciphering the fossil record of cyanobacteria is crucial to understand their role in the chemical and biological evolution of the early Earth. They profoundly modified the redox conditions of early ecosystems more than 2.4 Ga ago, the age of the Great Oxidation Event (GOE), and provided the ancestor of the chloroplast by endosymbiosis, leading the diversification of photosynthetic eukaryotes.

View Article and Find Full Text PDF

Today oxygenic photosynthesis is unique to cyanobacteria and their plastid relatives within eukaryotes. Although its origin before the Great Oxidation Event is still debated, the accumulation of O profoundly modified the redox chemistry of the Earth and the evolution of the biosphere, including complex life. Understanding the diversification of cyanobacteria is thus crucial to grasping the coevolution of our planet and life, but their early fossil record remains ambiguous.

View Article and Find Full Text PDF
Article Synopsis
  • The term "biosignature" is crucial in astrobiology, linking observations to possible biological causes, but its definitions vary across scientific communities.
  • There are concerns that current definitions may overstate certainty and create confusion, especially since the distinction between life and non-life is not always clear.
  • The authors propose that scientists should be cautious with the term, define it explicitly, and use a checklist for evaluating biosignature claims to enhance communication and understanding in the field.
View Article and Find Full Text PDF

The morphogenesis of most carbonaceous microstructures that resemble microfossils in Archean (4-2.5 Ga old) rocks remains debated. The associated carbonaceous matter may even-in some cases-derive from abiotic organic molecules.

View Article and Find Full Text PDF

On Earth, the circulation of Fe-rich fluids in hydrothermal environments leads to characteristic iron mineral deposits, reflecting the pH and redox chemical conditions of the hydrothermal system, and is often associated with chemotroph microorganisms capable of deriving energy from chemical gradients. On Mars, iron-rich hydrothermal sites are considered to be potentially important astrobiological targets for searching evidence of life during exploration missions, such as the Mars 2020 and the ExoMars 2022 missions. In this study, an extinct hydrothermal chimney from the Jaroso hydrothermal system (SE Spain), considered an interesting geodynamic and mineralogical terrestrial analog for Mars, was analyzed using Raman spectroscopy, X-ray diffraction, and scanning electron microscopy coupled with energy dispersive X-ray spectroscopy.

View Article and Find Full Text PDF

Ultraviolet (UV)-screening compounds represent a substantial asset for the survival of cyanobacteria in extreme environments exposed to high doses of UV radiations on modern and early Earth. Among these molecules, the halochromic pigment gloeocapsin remains poorly characterized and studied. In this study, we identified a gloeocapsin-producing cultivable cyanobacteria: the strain ULC007.

View Article and Find Full Text PDF

The acquisition of photosynthesis is a fundamental step in the evolution of eukaryotes. However, few phototrophic organisms are unambiguously recognized in the Precambrian record. The in situ detection of metabolic byproducts in individual microfossils is the key for the direct identification of their metabolisms.

View Article and Find Full Text PDF

In this study, we report on the ability of the yeast Yarrowia lipolytica W29 to produce an extracellular melanin-like brown pigment at high yield (0.5 mg/ml) in culture medium supplemented with L-tyrosine. This pigment has been characterized as pyomelanin and its synthesis was found to occur by the so-called HGA-melanin pathway.

View Article and Find Full Text PDF

Earth has been habitable for 4.3 billion years, and the earliest rock record indicates the presence of a microbial biosphere by at least 3.4 billion years ago-and disputably earlier.

View Article and Find Full Text PDF

Fungi are crucial components of modern ecosystems. They may have had an important role in the colonization of land by eukaryotes, and in the appearance and success of land plants and metazoans. Nevertheless, fossils that can unambiguously be identified as fungi are absent from the fossil record until the middle of the Palaeozoic era.

View Article and Find Full Text PDF

Cyanobacteria played an important role in the evolution of Early Earth and the biosphere. They are responsible for the oxygenation of the atmosphere and oceans since the Great Oxidation Event around 2.4 Ga, debatably earlier.

View Article and Find Full Text PDF

Knowing which geodynamic regimes characterised the early Earth is a fundamental question. This implies to determine when and how modern plate tectonics began. Today, the tectonic regime is dominated by mobile-lid tectonics including deep and cold subduction.

View Article and Find Full Text PDF

Existing paleontological data indicate marked eukaryote diversification in the Neoproterozoic, ca. 800 Ma, driven by predation pressure and various other biotic and abiotic factors. Although the eukaryotic record remains less diverse before that time, molecular clock estimates and earliest crown-group affiliated microfossils suggest that the diversification may have originated during the Mesoproterozoic.

View Article and Find Full Text PDF

Cyanobacteria form one of the most diversified phyla of Bacteria. They are important ecologically as primary producers, for Earth evolution and biotechnological applications. Yet, Cyanobacteria are notably difficult to purify and grow axenically, and most strains in culture collections contain heterotrophic bacteria that were probably associated with Cyanobacteria in the environment.

View Article and Find Full Text PDF

Publicly available genomes are crucial for phylogenetic and metagenomic studies, in which contaminating sequences can be the cause of major problems. This issue is expected to be especially important for Cyanobacteria because axenic strains are notoriously difficult to obtain and keep in culture. Yet, despite their great scientific interest, no data are currently available concerning the quality of publicly available cyanobacterial genomes.

View Article and Find Full Text PDF

Objective: Cyanobacteria are an ancient phylum of prokaryotes that contain the class Oxyphotobacteria. This group has been extensively studied by phylogenomics notably because it is widely accepted that Cyanobacteria were responsible for the spread of photosynthesis to the eukaryotic domain. The aim of this study was to evaluate the fraction of the oxyphotobacterial diversity for which sequenced genomes are available for genomic studies.

View Article and Find Full Text PDF

The Close-Up Imager (CLUPI) onboard the ESA ExoMars Rover is a powerful high-resolution color camera specifically designed for close-up observations. Its accommodation on the movable drill allows multiple positioning. The science objectives of the instrument are geological characterization of rocks in terms of texture, structure, and color and the search for potential morphological biosignatures.

View Article and Find Full Text PDF

Problematic microfossils dominate the palaeontological record between the Great Oxidation Event 2.4 billion years ago (Ga) and the last Palaeoproterozoic iron formations, deposited 500-600 million years later. These fossils are often associated with iron-rich sedimentary rocks, but their affinities, metabolism, and, hence, their contributions to Earth surface oxidation and Fe deposition remain unknown.

View Article and Find Full Text PDF

ULC007 is an Antarctic freshwater cyanobacterium. Its draft genome is 5,684,389 bp long. It contains a total of 5,604 protein-encoding genes, of which 22.

View Article and Find Full Text PDF
Article Synopsis
  • Travertine deposition creates unique landscapes by forming calcareous barriers that turn river flows into cascades and ponds, relying on a combination of biogenic and abiotic factors for carbonate precipitation.
  • Research on calcareous crusts and water chemistry along the Hoyoux River revealed distinct surface textures of travertine linked to specific microenvironments and local water flow, with the cyanobacterium Phormidium incrustatum identified as the main contributor to carbonate formation.
  • The study utilized various scientific methods, including scanning electron microscopy and molecular sequencing, to investigate the dominant cyanobacterial strain's role in the construction and fossilization of travertine deposits, providing insights into its ecological impact.
View Article and Find Full Text PDF

Extracellular UV-screening pigments gloeocapsin and scytonemin present in the exopolysaccharide (EPS) envelopes of extremophilic cyanobacteria of freshwater and marine environments were studied by Raman spectroscopy and compared to their intracellular photosynthetic pigments. This Raman spectral analysis of the extracellular pigment gloeocapsin showed that it shared Raman spectral signatures with parietin, a radiation-protective pigment known in lichens. The UV-light spectra also show similarities.

View Article and Find Full Text PDF

Although the notion of an early origin and diversification of life on Earth during the Archaean eon has received increasing support in geochemical, sedimentological and palaeontological evidence, ambiguities and controversies persist regarding the biogenicity and syngeneity of the record older than Late Archaean. Non-biological processes are known to produce morphologies similar to some microfossils, and hydrothermal fluids have the potential to produce abiotic organic compounds with depleted carbon isotope values, making it difficult to establish unambiguous traces of life. Here we report the discovery of a population of large (up to about 300 mum in diameter) carbonaceous spheroidal microstructures in Mesoarchaean shales and siltstones of the Moodies Group, South Africa, the Earth's oldest siliciclastic alluvial to tidal-estuarine deposits.

View Article and Find Full Text PDF

The Precambrian era records the evolution of the domain Eucarya. Although the taxonomy of fossils is often impossible to resolve beyond the level of domain, their morphology and chemistry indicate the evolution of major biological innovations. The late Archean record for eukaryotes is limited to trace amounts of biomarkers.

View Article and Find Full Text PDF