Publications by authors named "Emmanuelle Grillon"

Stroke is the leading cause of disability in adults. Many current clinical trials use intravenous (IV) administration of human bone marrow-derived mesenchymal stem cells (BM-MSCs). This autologous graft requires a delay for ex vivo expansion of cells.

View Article and Find Full Text PDF

Background: In cancer cells in vitro, the glycolytic pathway and the mitochondrial tricarboxylic acid (TCA) cycle are programmed to produce more precursor molecules, and relatively less ATP, than in differentiated cells. We address the questions of whether and where these changes occur in vivo in glioblastomas grown from C6 cells in rat brain. These gliomas show some spatial organization, notably in the upregulation of membrane proton transporters near the rim.

View Article and Find Full Text PDF
Article Synopsis
  • The study looks at how tiny blood vessels in the brain change after a stroke, which is important for understanding brain recovery.
  • It uses special MRI scans and tests in rats to see these changes 25 days after a stroke.
  • The research found three stages of blood vessel behavior: early damage, a transition phase, and finally, a healing stage where the blood vessels start to repair and stabilize.
View Article and Find Full Text PDF

A quantitative estimate of cerebral blood oxygen saturation is of critical importance in the investigation of cerebrovascular disease. While positron emission tomography can map in vivo the oxygen level in blood, it has limited availability and requires ionizing radiation. Magnetic resonance imaging (MRI) offers an alternative through the blood oxygen level-dependent contrast.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSCs) have strong potential for cell therapy after stroke. Tracking stem cells in vivo following a graft can provide insight into many issues regarding optimal route and/or dosing. hMSCs were labeled for magnetic resonance imaging (MRI) and histology with micrometer-sized superparamagnetic iron oxides (M-SPIOs) that contained a fluorophore.

View Article and Find Full Text PDF
Article Synopsis
  • A stroke is a big problem that can make it hard for people to move and do things, and right now there aren't many treatments besides one type called thrombolysis.
  • Scientists are testing if using special cells from people, called human mesenchymal stem cells (hMSCs), can help heal the brain after a stroke, even if they are injected a bit later.
  • In their study with rats, they found that when they injected these stem cells into the damaged part of the brain, it helped change the blood vessels in a way that could support recovery, which they were able to see using MRI scans.
View Article and Find Full Text PDF

Tumors create a heterogeneous acidic microenvironment which assists their growth and which must be taken into account in the design of drugs and their delivery. In addition, the acidic extracellular pH (pHe) is itself exploited in several experimental techniques for drug delivery. The way the acidity is created is not clear.

View Article and Find Full Text PDF

Human mesenchymal stem cells (hMSC) are a promising source for cell therapy after stroke. To deliver these cells, an IV injection appears safer than a local graft. We aimed to assess the whole-body biodistribution of IV-injected (99m)Tc-HMPAO-labeled hMSC in normal rats (n = 9) and following a right middle cerebral artery occlusion (MCAo, n = 9).

View Article and Find Full Text PDF

Loss of integrity of the blood-brain barrier (BBB) and brain swelling is a potentially lethal complication of reperfusion in human stroke. To assess the time course of BBB modifications, we performed angiography, diffusion-weighted imaging, T1-weighted (T1 W) imaging and T1 mapping, and monitored acute changes after middle cerebral artery occlusion and recanalization in rats (n = 27). The animals were grouped according to the duration of occlusion: 30 min (group A, n = 8), 1 h 30 min (group B, n = 9), and 2 h 30 min (group C, n = 10).

View Article and Find Full Text PDF

We evaluated in vivo reflectance spectroscopy of visible light as a method to assess brain tissue hemoglobin oxygen saturation in rat striatum (SstrO2). Seven anesthetized and mechanically ventilated rats were subjected to incremental reduction in the fraction of inspired oxygen (Fio2): 0.35, 0.

View Article and Find Full Text PDF

Several recent studies have reported changes of brain tissue T(1) in ischemic models during the first minutes after occlusion of the middle cerebral artery (MCA). In order to assess whether these tissue T(1) changes are related to an increase in tissue water content, we performed T(1) (7 T) and tissue water content measurements in a rat model (n = 10, Sprague-Dawley) of focal cerebral ischemia (intraluminal occlusion model). The tissue water content was determined using a gravimetric technique.

View Article and Find Full Text PDF

The magnetic polarization of the stable (129)Xe isotope may be enhanced dramatically by means of optical techniques and, in principle, hyperpolarized (129)Xe MRI should allow quantitative mapping of cerebral blood flow with better spatial resolution than scintigraphic techniques. A parameter necessary for this quantitation, and not previously known, is the longitudinal relaxation time (T(1) (tissue)) of (129)Xe in brain tissue in vivo: a method for determining this is reported. The time course of the MR signal in the brain during arterial injection of hyperpolarized (129)Xe in a lipid emulsion was analyzed using an extended two-compartment model.

View Article and Find Full Text PDF

A noninvasive technique for measuring the permeability of the blood-brain barrier (BBB) to water could help to evaluate changes in the functional integrity of the BBB that occur in different pathologies, such as multiple sclerosis or growth of brain tumor. Recently, Schwarzbauer et al. (Magn Reson Med 1997;37:769-777) proposed an MR method to measure this permeability based on the T(1) reductions induced by injecting various doses of paramagnetic contrast agent.

View Article and Find Full Text PDF