Functional genetics has identified drug targets for metabolic disorders. Opioid use impacts metabolic homeostasis, although mechanisms remain elusive. Here, we explore the OPRD1 gene (encoding delta opioid receptor, DOP) to understand its impact on type 2 diabetes.
View Article and Find Full Text PDFHistone deacetylases enzymes (HDACs) are chromatin modifiers that regulate gene expression through deacetylation of lysine residues within specific histone and non-histone proteins. A cell-specific gene expression pattern defines the identity of insulin-producing pancreatic β cells, yet molecular networks driving this transcriptional specificity are not fully understood. Here, we investigated the HDAC-dependent molecular mechanisms controlling pancreatic β-cell identity and function using the pan-HDAC inhibitor trichostatin A through chromatin immunoprecipitation assays and RNA sequencing experiments.
View Article and Find Full Text PDFUnlabelled: The loss of pancreatic β-cell identity has emerged as an important feature of type 2 diabetes development, but the molecular mechanisms are still elusive. Here, we explore the cell-autonomous role of the cell-cycle regulator and transcription factor E2F1 in the maintenance of β-cell identity, insulin secretion, and glucose homeostasis. We show that the β-cell-specific loss of E2f1 function in mice triggers glucose intolerance associated with defective insulin secretion, altered endocrine cell mass, downregulation of many β-cell genes, and concomitant increase of non-β-cell markers.
View Article and Find Full Text PDFHuman induced pluripotent stem cells (hiPSCs) have the potential to be differentiated into any cell type, making them a relevant tool for therapeutic purposes such as cell-based therapies. In particular, they show great promise for obesity treatment as they represent an unlimited source of brown/beige adipose progenitors (hiPSC-BAPs). However, the low brown/beige adipocyte differentiation potential in 2D cultures represents a strong limitation for clinical use.
View Article and Find Full Text PDFExcessive fetal growth is associated with DNA methylation alterations in human hematopoietic stem and progenitor cells (HSPC), but their functional impact remains elusive. We implemented an integrative analysis combining single-cell epigenomics, single-cell transcriptomics, and in vitro analyses to functionally link DNA methylation changes to putative alterations of HSPC functions. We showed in hematopoietic stem cells (HSC) from large for gestational age neonates that both DNA hypermethylation and chromatin rearrangements target a specific network of transcription factors known to sustain stem cell quiescence.
View Article and Find Full Text PDFBackground: We studied a young woman with atypical diabetes associated with mild intellectual disability, lymphedema distichiasis syndrome (LDS) and polymalformative syndrome including distichiasis. We used different genetic tools to identify causative pathogenic mutations and/or copy number variations.
Results: Although proband's, diabetes mellitus occurred during childhood, type 1 diabetes was unlikely due to the absence of detectable autoimmunity.
Background: Nephrolithiasis (NL) is a complex multifactorial disease affecting up to 10%-20% of the human population and causing a significant burden on public health systems worldwide. It results from a combination of environmental and genetic factors. Hyperoxaluria is a major risk factor for NL.
View Article and Find Full Text PDFRecent advances in genetic analysis have significantly helped in progressively attenuating the heritability gap of obesity and have brought into focus monogenic variants that disrupt the melanocortin signaling. In a previous study, next-generation sequencing revealed a monogenic etiology in ∼50% of the children with severe obesity from a consanguineous population in Pakistan. Here we assess rare variants in obesity-causing genes in young adults with severe obesity from the same region.
View Article and Find Full Text PDFType 2 diabetes is characterized by chronic hyperglycemia associated with impaired insulin action and secretion. Although the heritability of type 2 diabetes is high, the environment, including blood components, could play a major role in the development of the disease. Amongst environmental effects, epitranscriptomic modifications have been recently shown to affect gene expression and glucose homeostasis.
View Article and Find Full Text PDFBackground: Diagnosis of monogenic diabetes has important clinical implications for treatment and health expenditure. However, its prevalence remains to be specified in many countries, particularly from South Europe, North Africa and Middle-East, where non-autoimmune diabetes in young adults is increasing dramatically.
Aims: To identify cases of monogenic diabetes in young adults from Mediterranean countries and assess the specificities between countries.
Genome-wide association studies have identified 240 independent loci associated with type 2 diabetes (T2D) risk, but this knowledge has not advanced precision medicine. In contrast, the genetic diagnosis of monogenic forms of diabetes (including maturity-onset diabetes of the young (MODY)) are textbook cases of genomic medicine. Recent studies trying to bridge the gap between monogenic diabetes and T2D have been inconclusive.
View Article and Find Full Text PDFCellular stress response contributes to epithelial defense in adaptation to environment changes. Galectins play a pivotal role in the regulation of this response in malignant cells. However, precise underlying mechanisms are largely unknown.
View Article and Find Full Text PDFMonogenic forms of obesity have been identified in ≤10% of severely obese European patients. However, the overall spectrum of deleterious variants (point mutations and structural variants) responsible for childhood severe obesity remains elusive. In this study, we genetically screened 225 severely obese children from consanguineous Pakistani families through a combination of techniques, including an in-house-developed augmented whole-exome sequencing method (CoDE-seq) that enables simultaneous detection of whole-exome copy number variations (CNVs) and point mutations in coding regions.
View Article and Find Full Text PDFThe G-protein-coupled receptor accessory protein MRAP2 is implicated in energy control in rodents, notably via the melanocortin-4 receptor. Although some MRAP2 mutations have been described in people with obesity, their functional consequences on adiposity remain elusive. Using large-scale sequencing of MRAP2 in 9,418 people, we identified 23 rare heterozygous variants associated with increased obesity risk in both adults and children.
View Article and Find Full Text PDFObjective: The molecular diagnosis of extreme forms of obesity, in which accurate detection of both copy number variations (CNVs) and point mutations, is crucial for an optimal care of the patients and genetic counseling for their families. Whole-exome sequencing (WES) has benefited considerably this molecular diagnosis, but its poor ability to detect CNVs remains a major limitation. We aimed to develop a method (CoDE-seq) enabling the accurate detection of both CNVs and point mutations in one step.
View Article and Find Full Text PDFStudy of monogenic forms of obesity has demonstrated the pivotal role of the central leptin-melanocortin pathway in controlling energy balance, appetite and body weight . The majority of loss-of-function mutations (mostly recessive or co-dominant) have been identified in genes that are directly involved in leptin-melanocortin signaling. These genes, however, only explain obesity in <5% of cases, predominantly from outbred populations .
View Article and Find Full Text PDFObjectives: Genome-wide association studies have reported that DNA polymorphisms at the CDKN2A locus modulate fasting glucose in human and contribute to type 2 diabetes (T2D) risk. Yet the causal relationship between this gene and defective energy homeostasis remains elusive. Here we sought to understand the contribution of Cdkn2a to metabolic homeostasis.
View Article and Find Full Text PDFContext: The population of Guadeloupe Island exhibits a high prevalence of obesity.
Objective: We aimed to investigate whether rare genetic mutations in genes involved in monogenic obesity (or diabetes) might be causal in this population of Afro-Caribbean ancestry.
Design And Setting: This was a secondary analysis of a study on obesity conducted in schoolchildren from Guadeloupe in 2013 that aimed to assess changes in children's profiles after a lifestyle intervention program.
Objectives: Genome-wide association studies (GWAS) have identified >100 loci independently contributing to type 2 diabetes (T2D) risk. However, translational implications for precision medicine and for the development of novel treatments have been disappointing, due to poor knowledge of how these loci impact T2D pathophysiology. Here, we aimed to measure the expression of genes located nearby T2D associated signals and to assess their effect on insulin secretion from pancreatic beta cells.
View Article and Find Full Text PDFThe endoplasmic reticulum (ER) unfolded protein response (UPR(er)) pathway plays an important role in helping pancreatic β cells to adapt their cellular responses to environmental cues and metabolic stress. Although altered UPR(er) gene expression appears in rodent and human type 2 diabetic (T2D) islets, the underlying molecular mechanisms remain unknown. We show here that germline and β cell-specific disruption of the lysine acetyltransferase 2B (Kat2b) gene in mice leads to impaired insulin secretion and glucose intolerance.
View Article and Find Full Text PDFMolecular diagnosis of monogenic diabetes and obesity is of paramount importance for both the patient and society, as it can result in personalized medicine associated with a better life and it eventually saves health care spending. Genetic clinical laboratories are currently switching from Sanger sequencing to next-generation sequencing (NGS) approaches but choosing the optimal protocols is not easy. Here, we compared the sequencing coverage of 43 genes involved in monogenic forms of diabetes and obesity, and variant detection rates, resulting from four enrichment methods based on the sonication of DNA (Agilent SureSelect, RainDance technologies), or using enzymes for DNA fragmentation (Illumina Nextera, Agilent HaloPlex).
View Article and Find Full Text PDFObjective: Single gene mutations leading to severe obesity have so far been identified in 3-5% cases in European populations. However, prevalence of these pathogenic mutations has not systematically been examined in specific consanguineous populations. Here we describe the incidence of obesity-associated mutations through a step-wise sequence analysis, in a cohort of 73 Pakistani children with severe obesity from consanguineous families.
View Article and Find Full Text PDFObjective: Mutations in leptin receptor gene (LEPR) result in early onset extreme adiposity. However, their prevalence in different populations is not known. Indeed, LEPR screening by gold standard Sanger sequencing has been limited by its large size and the cost.
View Article and Find Full Text PDFThe nuclear receptor peroxisome proliferator-activated receptor (PPAR) is a transcription factor whose expression is induced during adipogenesis and that is required for the acquisition and control of mature adipocyte functions. Indeed, PPAR induces the expression of genes involved in lipid synthesis and storage through enhancers activated during adipocyte differentiation. Here, we show that PPAR also binds to enhancers already active in preadipocytes as evidenced by an active chromatin state including lower DNA methylation levels despite higher CpG content.
View Article and Find Full Text PDF