Background: The incidence of childhood type 1 diabetes (T1D) incidence is rising in many countries, supposedly because of changing environmental factors, which are yet largely unknown. The purpose of the study was to unravel environmental markers associated with T1D.
Methods: Cases were children with T1D from the French Isis-Diab cohort.
Context: Familial hypocalciuric hypercalcemia (FHH) is a genetically heterogeneous condition resembling primary hyperparathyroidism (PHPT) but not curable by surgery; FHH types 1, 2, and 3 are due to loss-of-function mutations of the CASR, GNA11, or AP2S1 genes, respectively.
Objective: This study aimed to compare the phenotypes of patients with genetically proven FHH types 1 or 3 or PHPT.
Design, Setting, And Patients: This was a mutation analysis in a large cohort, a cross-sectional comparison of 52 patients with FHH type 1, 22 patients with FHH type 3, 60 with PHPT, and 24 normal adults.
Autosomal dominantly inherited missense mutations in lamins A and C cause familial partial lipodystrophy of the Dunnigan-type (FPLD), and myopathies including Emery-Dreifuss muscular dystrophy (EDMD). While mutations responsible for FPLD are restricted to the carboxyl-terminal tails, those responsible for EDMD are spread throughout the molecules. We observed here the same structural abnormalities in the nuclear envelope and chromatin of fibroblasts from patients with FPLD and EDMD, harboring missense mutations at codons 482 and 453, respectively.
View Article and Find Full Text PDF